精英家教网 > 高中数学 > 题目详情

【题目】如下图在空间直角坐标系正四面体(各条棱均相等的三棱锥)的顶点分别在 轴上.

(Ⅰ)求证: 平面

(Ⅱ)求二面角的余弦值.

【答案】见解析.

【解析】试题分析:

,写出ABC的坐标,再求出D点坐标,从而得的坐标,只要它与平面的法向量垂直,即可证明线面平行;

求二面角,可取AB的中点F,由能证明∠CFD是所求二面角的平面角,在中由得余弦定理可得余弦值.也可求出二面角的两个面的法向量,由法向量夹角的余弦可得二面角的余弦.

试题解析:

(Ⅰ)由易知.

,

点的坐标为则由

可得

解得

所以.

又平面的一个法向量为

所以所以平面.

(Ⅱ)设的中点连接

为二面角的平面角.

由(Ⅰ)知,在

则由余弦定理知即二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某购物网站对在7座城市的线下体验店的广告费指出(万元)和销售额(万元)的数据统计如下表:

城市

广告费支出

销售额

(Ⅰ)若用线性回归模型拟合关系,求关于的线性回归方程;

(Ⅱ)若用对数函数回归模型拟合的关系,可得回归方程,经计算对数函数回归模型的相关系数约为,请说明选择哪个回归模型更合适,并用此模型预测城市的广告费用支出万元时的销售额.

参考数据: .

参考公式: .

相关系数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市政府为了引导居民合理用水,决定全面实施阶梯水价,阶梯水价原则上以住宅(一套住宅为一户)的月用水量为基准定价:若用水量不超过12吨时,按4元/吨计算水费;若用水量超过12吨且不超过14吨时,超过12吨部分按6.60元/吨计算水费;若用水量超过14吨时,超过14吨部分按7.8元/吨计算水费.为了了解全市居民月用水量的分布情况,通过抽样,获得了100户居民的月用水量(单位:吨),将数据按照分成8组,制成了如图1所示的频率分布直方图.

(Ⅰ)假设用抽到的100户居民月用水量作为样本估计全市的居民用水情况.

(ⅰ)现从全市居民中依次随机抽取5户,求这5户居民恰好3户居民的月用水量都超过12吨的概率;

(ⅱ)试估计全市居民用水价格的期望(精确到0.01);

(Ⅱ)如图2是该市居民李某2016年1~6月份的月用水费(元)与月份的散点图其拟合的线性回归方程是.若李某201617月份水费总支出为294.6元,试估计李某7月份的用水吨数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,过点且与轴垂直的直线为 轴,交于点,直线垂直平分,交于点.

(1)求点的轨迹方程;

(2)记点的轨迹为曲线,直线与曲线交于不同两点,且为常数),直线平行,且与曲线相切,切点为,试问的面积是否为定值.若为定值,求出的面积;若不是定值,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某次有600人参加的数学测试,其成绩的频数分布表如图所示,规定85分及其以上为优秀.

区间

[75,80)

[80,85)

[85,90)

[90,95)

[95,100]

人数

36

114

244

156

50

(Ⅰ)现用分层抽样的方法从这600人中抽取20人进行成绩分析,求其中成绩为优秀的学生人数;

(Ⅱ)在(Ⅰ)中抽取的20名学生中,要随机选取2名学生参加活动,记“其中成绩为优秀的人数”为,求的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018河南安阳市高三一模如下图在平面直角坐标系直线与直线之间的阴影部分即为区域中动点的距离之积为1

)求点的轨迹的方程

)动直线穿过区域分别交直线两点若直线与轨迹有且只有一个公共点求证 的面积恒为定值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项等比数列{an}(nN*),首项a13,前n项和为Sn,且S3a3S5a5S4a4成等差数列.

1)求数列{an}的通项公式;

2)数列{nan}的前n项和为Tn,若对任意正整数n,都有Tn[ab],求ba的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的前n项和为Sn,等比数列{bn}的前n项和为Tn,a1=﹣1,b1=1,a2+b2=2.

(1)若a3+b3=5,求{bn}的通项公式;

(2)若T3=21,求S3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知直线的极坐标方程是以极点为原点,极轴为轴的正半轴建立极坐标系,曲线的参数方程为为参数.

(1)写出直线的普通方程与曲线的直角坐标方程;

(2)设为曲线上任意一点,求的最小值.

查看答案和解析>>

同步练习册答案