精英家教网 > 高中数学 > 题目详情

【题目】数列的前项和为,且对任意正整数,都有

1)试证明数列是等差数列,并求其通项公式;

2)如果等比数列共有2017项,其首项与公比均为2,在数列的每相邻两项之间插入后,得到一个新数列,求数列中所有项的和;

3)如果存在,使不等式成立,若存在,求实数的范围,若不存在,请说明理由;

【答案】1)见解析,;(2;(3)不存在;见解析

【解析】

(1)时,时,即可证明。

(2)通过题意,写出前n项和式子,代入即可求得数列中所有项的和;(3)不等式,即不等式

,化为:

验证:时不等式不成立。时,,即可求得结论。

(1)证明:时,

时,

验证时也成立,所以数列是首项和公差都是1的等差数列。

(2)通过题意, 则

(3)不等式

即不等式

化为:

因为,而时不等式不成立。

时,,因此不存在

使得不等式成立。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知在RtABC中,,它的内接正方形DEFG的一边EF在斜边BA上,DG分别在边BCCA上,设△ABC的面积为,正方形DEFG的面积为.

1)试用分别表示

2)设,求的最大值,并求出此时的.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019213日《西安市全民阅读促进条例》全文发布,旨在保障全民阅读权利,培养全民阅读习惯,提高全民阅读能力,推动文明城市和文化强市建设.某高校为了解条例发布以来全校学生的阅读情况,随机调查了200名学生每周阅读时间(单位:小时)并绘制如图所示的频率分布直方图.

1)求这200名学生每周阅读时间的样本平均数;

2)为查找影响学生阅读时间的因素,学校团委决定从每周阅读时间为的学生中抽取9名参加座谈会.

i)你认为9个名额应该怎么分配?并说明理由;

ii)座谈中发现9名学生中理工类专业的较多.请根据200名学生的调研数据,填写下面的列联表,并判断是否有的把握认为学生阅读时间不足(每周阅读时间不足8.5小时)与“是否理工类专业”有关?(精确到0.1

阅读时间不足8.5小时

阅读时间超过8.5小时

理工类专业

40

60

非理工类专业

附:).

临界值表:

0.150

0.100

0.050

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】互联网+”智慧城市的重要内容,A市在智慧城市的建设中,为方便市民使用互联网,在主城区覆盖了免费WiFi为了解免费WiFiA市的使用情况,调查机构借助网络进行了问卷调查,并从参与调查的网友中抽取了200人进行抽样分析,得到如下列联表(单位:人):

经常使用免费WiFi

尔或不用免费WiFi

合计

45岁及以下

70

30

100

45岁以上

60

40

100

合计

130

70

200

1)根据以上数据,判断是否有90%的把握认为A市使用免费WiFi的情况与年龄有关;

2)现从所抽取的45岁以上的市民中按是否经常使用WiFi进行分层抽样再抽取5.

i)分别求这5人中经常使用,偶尔或不用免费WFi的人数;

ii)从这5人中,再随机选出2人各赠送1件礼品,求选出的2人中至少有1人经常使用免费WiFi的概率.

附:,其中.

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知直线的参数方程为.以坐标原点为极点,轴的非负半轴为极轴,取相同的长度单位建立极坐标系,曲线的极坐标方程为

1)求直线的普通方程和曲线的直角坐标方程;

2)若曲线上的点到直线l的最大距离为,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=exgx)=42,若在[0+∞)上存在x1x2,使得fx1)=gx2),则x2x1的最小值是(   )

A.1+ln2B.1ln2C.D.e2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在我们的教材必修一中有这样一个问题,假设你有一笔资金,现有三种投资方案供你选择,这三种方案的回报如下:

方案一:每天回报元;

方案二:第一天回报元,以后每天比前一天多回报元;

方案三:第一天回报元,以后每天的回报比前一天翻一番.

记三种方案第天的回报分别为.

1)根据数列的定义判断数列的类型,并据此写出三个数列的通项公式;

2)小王准备做一个为期十天的短期投资,他应该选择哪一种投资方案?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知球O是正三棱锥(底面为正三角形,顶点在底面的射影为底面中心)A-BCD的外接球,BC=3,,点E在线段BD上,且BD=3BE,过点E作圆O的截面,则所得截面圆面积的取值范围是__.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在三棱柱中,平面是线段上的动点,是线段上的中点.

(Ⅰ)证明:

(Ⅱ)若,且直线所成角的余弦值为,试指出点在线段上的位置,并求三棱锥的体积.

查看答案和解析>>

同步练习册答案