精英家教网 > 高中数学 > 题目详情
9.函数f(x)=$\frac{\sqrt{4-x^2}}{2-\sqrt{(2-x)^2}}$的定义域是[-2,0)∪(0,2].

分析 化简函数f(x)的解析式,列出使解析式有意义的不等式组,求出解集即可.

解答 解:∵函数f(x)=$\frac{\sqrt{4-x^2}}{2-\sqrt{(2-x)^2}}$=$\frac{\sqrt{4{-x}^{2}}}{2-|2-x|}$,
∴$\left\{\begin{array}{l}{4{-x}^{2}≥0}\\{2-|2-x|≠0}\end{array}\right.$,
解得$\left\{\begin{array}{l}{-2≤x≤2}\\{x≠4且x≠0}\end{array}\right.$,
即-2≤x<0或0<x≤2;
∴f(x)的定义域为[-2,0)∪(0,2].
故答案为:[-2,0)∪(0,2].

点评 本题考查了求函数定义域的问题,也考查了不等式的解法与应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=$\frac{a{x}^{2}+1}{bx-c}$,a∈N*是奇函数,且f(1)=1,f(-2)>-$\frac{7}{5}$.
(1)求函数f(x)的解析式;
(2)f(x)在(1,+∞)上的单调性如何?用单调性定义证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数y=x2-2mx+5,求函数在区间[0,1]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(1)判断函数f(x)=x3+x的奇偶性.
(2)如图是函数f(x)=x3+x的图象的一部分,你能根据f(x)的奇偶性画出它在y轴左边的图象吗?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知f(x)在(-∞,+∞)内是减函数,a,b∈R,a+b≤0,则有④.
①f(a)+f(b)≤-f(a)-f(b);
②f(a)+f(b)≥-f(a)-f(b);
③f(a)+f(b)≤f(-a)+f(-b);
④f(a)+f(b)≥f(-a)+f(-b).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.将函数f(x)=sin(2x-$\frac{π}{3}$)的图象向左平移$\frac{π}{3}$个单位长度,再将图象上各点的横坐标压缩到原来的$\frac{1}{2}$倍,则所得到的图象的一条对称轴是x=$\frac{π}{24}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)满足a≤$\sqrt{3}$b,若离心率为e,则e2+$\frac{1}{e^2}$的最小值为(  )
A.2B.$\frac{3}{2}$C.$2\sqrt{3}$D.$\frac{13}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知等比数列{an}的前n项和为Sn,且S2=6,S4=18,则S6的值为42.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知等差数列{an}的前n项和为Sn,若2a6=a3+6,则S7=(  )
A.49B.42C.35D.28

查看答案和解析>>

同步练习册答案