精英家教网 > 高中数学 > 题目详情

【题目】在框图中,设x=2,并在输入框中输入n=4;ai=i(i=0,1,2,3,4).则此程序执行后输出的S值为(

A.26
B.49
C.52
D.98

【答案】D
【解析】解:模拟执行程序框图,可得
第1次执行循环体,k=3,S=3+4×2=11,满足条件k>0,
第2次执行循环体,k=2,S=2+11×2=24,满足条件k>0,
第3次执行循环体,k=1,S=1+24×2=49,满足条件k>0,
第4次执行循环体,k=0,S=0+49×2=98,不满足条件k>0,退出循环,输出S的值为98.
故选:D.
【考点精析】本题主要考查了程序框图的相关知识点,需要掌握程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形;一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数f(x)=lnx﹣ ax2﹣bx,若x=1是f(x)的极大值点,则a的取值范围为(
A.(﹣1,0)
B.(﹣1,+∞)
C.(0,+∞)
D.(﹣∞,﹣1)∪(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位共有老、中、青职工430,其中青年职工160人,中年职工人数是老年职工人数的2倍。为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为

A. 9 B. 18 C. 27 D. 36

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为棱长的正方体, 为棱的中点.

(1)求三棱锥的体积;

(2)求证: 平面.

【答案】(1);(2)见解析.

【解析】试题分析:(1)高为ED,再根据锥体体积公式计算体积(2)连接于点,根据三角形中位线性质得,再根据线面平行判定定理得结论

试题解析:(1)体积

(2)连接于点,则的中位线,即

,得到 平面.

型】解答
束】
18

【题目】已知抛物线 的焦点为圆的圆心.

(1)求抛物线的标准方程;

(2)若斜率的直线过抛物线的焦点与抛物线相交于两点,求弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}满足a1=1,nan+1=(n+1)an+n(n+1),n∈N*
(1)证明:数列{ }是等差数列;
(2)设bn=3n ,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=loga(1+x),g(x)=loga(1-x),(a>0a1),h(x)=f(x)-g(x).

(1)求函数h(x)的定义域

(2)判断h(x)的奇偶性,并说明理由;

(3)f(2)=1,求使h(x)>0成立的x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知以坐标原点为圆心的圆与抛物线相交于不同的两点 ,与抛物线的准线相交于不同的两点 ,且.

(1)求抛物线的方程;

(2)若不经过坐标原点的直线与抛物线相交于不同的两点 ,且满足.证明直线过定点,并求出点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为研究冬季昼夜温差大小对某反季节大豆新品种发芽率的影响,某农科所记录了5组昼夜温差与100颗种子发芽数,得到如下资料:

组号

1

2

3

4

5

温差

10

11

13

12

8

发芽数(颗)

23

25

30

26

16

该所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求出线性回归方程,再对被选取的2组数据进行检验.

1)若选取的是第1组与第5组的两组数据,请根据第2组至第4组的数据,求出关于的线性回归方程

2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠?

(参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为椭圆的左右焦点在椭圆上移动时 的内心的轨迹方程为__________

查看答案和解析>>

同步练习册答案