精英家教网 > 高中数学 > 题目详情
若不等式|x+1|+|x-3|≥a+
4
a
对任意的实数x恒成立,则实数a的取值范围是
 
考点:绝对值不等式的解法
专题:不等式的解法及应用
分析:由条件利用绝对值三角不等式求得|x+1|+|x-3|≥4,结合题意可得4≥a+
4
a
,可得a<0 或
a>0
a2-4a+4≤0
,由此解得a的范围.
解答: 解:由于|x+1|+|x-3|≥|(x+1)-(x-3)|=4,不等式|x+1|+|x-3|≥a+
4
a
对任意的实数x恒成立,
∴4≥a+
4
a
,∴a<0 或
a>0
a2-4a+4≤0
,解得a<0,或a=2,
故答案为:(-∞,0)∪{2}.
点评:本题主要考查绝对值三角不等式,函数的恒成立问题,体现了转化、分类讨论的数学思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,平面α∥β∥γ,直线l、m分别与α、β、γ相交于点A、B、C和点D、E、F.若
AB
BC
=
1
3
,DF=20,则EF=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

一家公司计划生产某种小型产品的月固定成本为1万元,每生产1万件需要再投入2万元,设该公司一个月内生产该小型产品x万件并全部销售完,每万件的销售收入为4-x万元,且每万件国家给予补助2e-
2elnx
x
-
1
x
万元.(e为自然对数的底数,e是一个常数)
(Ⅰ)写出月利润f(x)(万元)关于月产量x(万件)的函数解析式
(Ⅱ)当月产量在[1,2e]万件时,求该公司在生产这种小型产品中所获得的月利润最大值(万元)及此时的月生成量值(万件).(注:月利润=月销售收入+月国家补助-月总成本)

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn,等比数列{bn}的前n项和为Tn,已知bn>0(n∈N+),且a1=b1=1,a2+b3=a3,S5=5(T3+b2).
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)求和:
b2
T1T2
+
b3
T2T3
+…+
bn+1
TnTn+1

查看答案和解析>>

科目:高中数学 来源: 题型:

a、b、c是三角形ABC三边,且
1
a
+
1
b
2
c
,则∠C的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正三棱锥P-ABC的四个顶点都在半径为
3
的球面上,M,N分别为PA,AB的中点.若MN⊥CM,则球心到平面ABC的距离为(  )
A、
3
B、
2
3
3
C、
3
3
D、
3
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
2
2
,两个焦点分别为F1(-1,0),F2(1,0).
(1)求椭圆C的方程;
(2)过点F2(1,0)的直线l交椭圆C于M,N两点,设点N关于x轴的对称点为Q(M、Q不重合),求证:直线MQ过x轴上一个定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个几何体的直观图及三视图如图所示,M,N分别是AF,BC的中点.

(Ⅰ)写出这个几何体的名称;
(Ⅱ)求证:MN∥平面CDEF;
(Ⅲ)求多面体A-CDEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

过原点的直线交双曲线xy=
2
于P、Q两点,现将坐标平面沿x轴折成直二面角,则折后线段PQ的长度的最小值等于(  )
A、4
B、2
2
C、2
D、
2

查看答案和解析>>

同步练习册答案