精英家教网 > 高中数学 > 题目详情

已知数列{an}的前n项和Sn与通项an满足Sn=-an.
(1)求数列{an}的通项公式;
(2)设f(x)=log3x,bn=f(a1)+f(a2)+…+f(an),Tn=++…+,求T2012;
(3)若cn=an·f(an),求{cn}的前n项和Un.

(1) an=n    (2)     (3) Un=-+·n+n+1

解析解:(1)当n=1时,a1=,
当n≥2时,an=Sn-Sn-1=-an-+an-1,
所以an=an-1,
即数列{an}是首项为,公比为的等比数列,
故an=n.
(2)由已知可得f(an)=log3n=-n.
则bn=-1-2-3-…-n=-,
=-2(-),
又Tn=-2[(1-)+(-)+…+(-)]
=-2(1-),
所以T2012=-.
(3)由题意得cn=-n·n,
故Un=c1+c2+…+cn
=-[1×1+2×2+…+n×n],
Un=-[1×2+2×3+…+n×n+1],
两式相减可得
Un=-[1+2+…+n-n·n+1]
=-[1-n]+n·n+1
=-+·n+n·n+1,
则Un=-+·n+n+1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(2014·随州模拟)已知等比数列{an}满足an+1+an=9·2n-1,n∈N*.
(1)求数列{an}的通项公式.
(2)设数列{an}的前n项和为Sn,若不等式Sn>kan-2对一切n∈N*恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an}的前n项和
(1)求通项公式an;(2)令,求数列{bn}前n项的和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an}的首项a1=2a+1(a是常数,且a≠-1),
an=2an-1+n2-4n+2(n≥2),数列{bn}的首项b1=a,
bn=an+n2(n≥2).
(1)证明:{bn}从第2项起是以2为公比的等比数列;
(2)设Sn为数列{bn}的前n项和,且{Sn}是等比数列,求实数a的值;
(3)当a>0时,求数列{an}的最小项.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an}的前n项和为Sn,且有a1=2,Sn=2an-2.
(1)求数列an的通项公式;
(2)若bn=nan,求数列{bn}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an}的前n项和Snn2(n∈N*),等比数列{bn}满足b1a1,2b3b4.
(1)求数列{an}和{bn}的通项公式;
(2)若cnan·bn(n∈N*),求数列{cn}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等比数列{an}的所有项均为正数,首项a1=1,且a4,3a3a5成等差数列.
(1)求数列{an}的通项公式;
(2)数列{an+1λan}的前n项和为Sn,若Sn=2n-1(n∈N*),求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列的前n项和为,已知 
(1)求数列的通项公式;
(2)若,数列的前n项和为,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在等比数列的前n项和中,最小,且,前n项和,求n和公比q

查看答案和解析>>

同步练习册答案