精英家教网 > 高中数学 > 题目详情
1955年,印度数学家卡普耶卡(D.R.Kaprekar)研究了对四位自然数的一种交换:任给出四位数,用的四个数字由大到小重新排列成一个四位数m,再减去它的反序数n(即将的四个数字由小到大排列,规定反序后若左边数字有0,则将0去掉运算,比如0001,计算时按1计算),得出数,然后继续对重复上述变换,得数,…,如此进行下去,卡普耶卡发现,无论是多大的四位数,只要四个数字不全相同,最多进行k次上述变换,就会出现变换前后相同的四位数t(这个数称为Kaprekar变换的核).通过研究10进制四位数2014可得Kaprekar变换的核为             .
6174

试题分析:把5 298代入计算,用5 298的四个数字由大到小重新排列成一个四位数9852.则9852-2589=7263,用7263的四个数字由大到小重新排列成一个四位数7632.则7632-2367=5265,用5265的四个数字由大到小重新排列成一个四位数6552.则6552-2556=3996,用3996的四个数字由大到小重新排列成一个四位数9963.则9963-3699=6264,用6264的四个数字由大到小重新排列成一个四位数6642.则6642-2466=4176,用4176的四个数字由大到小重新排列成一个四位数7641.则7641-1467=6174,用6174的四个数字由大到小重新排列成一个四位数7641.则7641-1467=6174…可知7次变换之后,四位数最后都会停在一个确定的数6174上.同样地,把4 852代入计算,可知7次变换之后,四位数最后都会停在一个确定的数6174上.故答案为:7,6174
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(设数列的前项和为,且满足
(1)求的值并写出其通项公式;
(2)用三段论证明数列是等比数列.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

观察分析下表中的数据:
  多面体
 面数(
 顶点数()
 棱数()
  三棱锥
      5
      6
     9
  五棱锥
      6
      6
     10
  立方体
      6
      8
     12
猜想一般凸多面体中,所满足的等式是_________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

给出下面类比推理命题(其中Q为有理数集,R为实数集,C为复数集):
①“若a,b∈R,则a-b=0⇒a=b”,类比推出“若a,b∈C,则a-b=0⇒a=b”;
②“若a,b,c,d∈R,则复数a+bi=c+di⇒a=c,b=d”,类比推出,“若a,b,c,d∈Q,则a+b=c+d⇒a=c,b=d”;
③“若a,b∈R,则a-b>0⇒a>b”,类比推出“若a,b∈C,则a-b>0⇒a>b”;
④“若x∈R,则|x|<1⇒-1<x<1”,类比推出“若z∈C,则|z|<1⇒-1<z<1”.
其中类比正确的为(  )
A.①②B.①④C.①②③D.②③④

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若三角形内切圆的半径为r,三边长为,则三角形的面积,根据类比思想,若四面体内切球半径为R,四个面的面积为S1S2S3S4,则四面体的体积V=                .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在计算“1×2+2×3+...+n(n+1)”时,某同学学到了如下一种方法:
先改写第k项:k(k+1)=
由此得1×2-.
.
.............
.
相加,得1×2+2×3+...+n(n+1).
类比上述方法,请你计算“1×2×3×4+2×3×4×+....+”,
其结果是_________________.(结果写出关于一次因式的积的形式)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某公司做人事调整:设总经理一个,配有经理助理一名;设副经理两人,直接对总经理负责,设有6个部门,其中副经理A管理生产部、安全部和质量部,经理B管理销售部、财务部和保卫部;生产车间由生产部和安全部共同管理,公司配有质检中心和门岗.请根据以上信息设计并画出该公司的人事结构图.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

表示不超过的最大整数,例如:

依此规律,那么(    )
A.B.    C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

小明在做一道数学题目时发现:若复数(其中), 则 ,根据上面的结论,可以提出猜想: z1·z2·z3=                  

查看答案和解析>>

同步练习册答案