精英家教网 > 高中数学 > 题目详情

【题目】已知圆经过点与直线相切,圆心的轨迹为曲线,过点做直线与曲线交于不同两点,三角形的垂心为点.

1)求曲线的方程;

2)求证:点在一条定直线上,并求出这条直线的方程.

【答案】1;(2)证明见解析.

【解析】

1)根据抛物线的定义,得到圆心表示以为焦点,以为准线的抛物线,即可求得圆心的轨迹方程;

2)设,由三点共线,求得的值,再求得过点与直线垂直和点与直线垂直的直线方程,联立方程组,求得,即可得到结论.

1)圆经过点与直线相切,

则圆心满足到点与到直线的距离相等,

根据抛物线的定义,可得圆心表示以为焦点,以为准线的抛物线,

其中,所以圆心的轨迹方程为.

2)设

三点共线,则,整理得

过点与直线垂直的直线为

同理过点与直线垂直的直线为

两条垂线联立方程组 ,解得

所以垂心在直线.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,以原点为圆心,椭圆的长半轴为半径的圆与直线相切.

1)求椭圆的标准方程;

2)已知点为动直线与椭圆的两个交点,问:在轴上是否存在点,使为定值?若存在,试求出点的坐标和定值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】公元五世纪,数学家祖冲之估计圆周率的值的范围是:,为纪念数学家祖冲之在圆周率研究上的成就,某教师在讲授概率内容时要求学生从小数点后的6位数字141592中随机选取两个数字做为小数点后的前两位(整数部分3不变),那么得到的数字大于3.14的概率为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),以原点为极点,轴的非负半轴为极轴建立极坐标系,直线的极坐标方程为

1)求直线与曲线的普通方程;

2)若直线与曲线交于两点,点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C 的左、右顶点分别为,上、下顶点分别为,四边形的面积为,坐标原点O到直线的距离为.

1)求椭圆C的方程;

2)若直线l与椭圆C相交于AB两点,点P为椭圆C上异于AB的一点,四边形为平行四边形,探究:平行四边形的面积是否为定值?若是,求出此定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正三棱柱中,EF分别为AB的中点.

1)求证:平面ACF

2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求曲线在点处的切线方程;

2)若时,恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】噪声污染已经成为影响人们身体健康和生活质量的严重问题,为了了解声音强度(单位:分贝)与声音能量(单位:)之间的关系,将测量得到的声音强度和声音能量=1,2…,10)数据作了初步处理,得到如图散点图及一些统计量的值.

45.7

0.51

5.1

表中

(1)根据散点图判断,哪一个适宜作为声音强度关于声音能量的回归方程类型?(给出判断即可,不必说明理由)

(2)根据表中数据,求声音强度关于声音能量的回归方程;

(3)当声音强度大于60分贝时属于噪音,会产生噪音污染,城市中某点共受到两个声源的影响,这两个声源的声音能量分别是,且.己知点的声音能量等于声音能量之和.请根据(1)中的回归方程,判断点是否受到噪音污染的干扰,并说明理由.

附:对于一组数据.其回归直线的斜率和截距的最小二乘估计分别为:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数有两个零点,且则下列结论中不正确的是(

A.B.C.D.

查看答案和解析>>

同步练习册答案