精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥P—ABCD中,PD底面ABCDAB//DCADDCAB=AD=1DC=2PD=M为棱PB的中点.

(1)证明:DM平面PBC

(2)求二面角A—DM—C的余弦值.

【答案】(1) (2)

【解析】试题分析:(1)连结,取的中点,连结,由已知条件推导出,由此能证明平面;(2)以为原点,轴,建立空间直角坐标系,利用向量法能求出二面角的余弦值.

试题解析:(1)连接BD,取DC的中点G,连接BG

由此知DGGCBG=1,即△DBC为直角三角形,

BCBD.PD⊥平面ABCD,∴BCPD,又PDBDD

BC⊥平面BDP,∴BCDM.

PDBD=,PDBDMPB的中点,

DMPB,∵PBBCB

DM⊥平面PBC。

D为坐标原点,射线DADCDP分别为x轴、y轴、z轴的正半轴,建立如图所示的直角坐标系Dxyz

A(1,0,0),B(1,1,0),C(0,2,0),P(0,0,),

从而,设是平面ADM的法向量,

,即2∴可取

同理,设是平面CDM的法向量,则,即2

∴可取,∴

显然二面角ADMC的大小为钝角,∴所以二面角ADMC的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在三棱柱ABC﹣A1B1C1中,底面为正三角形,侧棱垂直底面,AB=2,AA1=6.若E,F分别是棱BB1 , CC1上的点,且BE=B1E,C1F= CC1 , 则异面直线A1E与AF所成角的余弦值为(
A.﹣
B.
C.﹣
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1) 当时,解关于的不等式

(2) 若对任意时,恒有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某客运公司用A,B两种型号的车辆承担甲、乙两地间的长途客运业务,每车每天往返一次.A,B两种车辆的载客量分别为36人和60人,从甲地去乙地的营运成本分别为1600元/辆和2400元/辆.公司拟组建一个不超过21辆车的客运车队,并要求B型车不多于A型车7辆.若每天要以不少于900人运完从甲地去乙地的旅客,且使公司从甲地去乙地的营运成本最小,那么应配备A型车、B型车各多少辆?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在中学生综合素质评价某个维度的测评中,分“优秀、合格、尚待改进”三个等级进行学生互评,某校高二年级有男生500人,女生400人,为了了解性别对维度测评结果的影响,采用分层抽样方法从高二年级抽取了45名学生的测评结果,并作出频率统计表如表: 表一:男生测评结果统计

等级

优秀

合格

尚待改进

频数

15

x

5

表二:女生测评结果统计

等级

优秀

合格

尚待改进

频数

15

3

y

参考数据:

P(K2≥k0

0.10

0.050

0.025

0.010

0.001

k0

2.706

3.841

5.024

6.635

10.828

(参考公式: ,其中n=a+b+c+d).
(1)计算x,y的值;
(2)由表一表二中统计数据完成2×2列联表,并判断是否有90%的把握认为“测评结果优秀与性别有关”.

男生

女生

总计

优秀

非优秀

总计

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ln(x﹣2)﹣ ,(a为常数且a≠0),若f(x)在x0处取得极值,且x0[e+2,e2+2],而f(x)≥0在[e+2,e2+2]上恒成立,则a的取值范围(
A.a≥e4+2e2
B.a>e2+2e
C.a≥e2+2e
D.a>e4+2e2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,若方程f(x)=a有四个不同的解x1 , x2 , x3 , x4 , 且x1<x2<x3<x4 , 则x3(x1+x2)+ 的取值范围是(
A.(﹣1,+∞)
B.(﹣1,1]
C.(﹣∞,1)
D.[﹣1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校举行运动会,其中三级跳远的成绩在8.0米(四舍五入,精确到0.1米)以上的进入决赛,把所得数据进行整理后,分成6组画出频率分布直方图的一部分(如图),已知从左到右前5个小组的频率分别为0.04,0.10,0.14,0.28,0.30,第6小组的频数是7.
(Ⅰ)求进入决赛的人数;
(Ⅱ)若从该校学生(人数很多)中随机抽取两名,记X表示两人中进入决赛的人数,求X的分布列及数学期望;
(Ⅲ)经过多次测试后发现,甲成绩均匀分布在8~10米之间,乙成绩均匀分布在9.5~10.5米之间,现甲,乙各跳一次,求甲比乙远的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 .

(1) 关于的方程在区间上有解,求的取值范围;

(2) 当时, 恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案