精英家教网 > 高中数学 > 题目详情
已知函数f(x)=log
1
2
(x2-mx-m),
(1)若m=1,求函数f(x)的定义域;
(2)若函数f(x)的值域为R,求实数m的取值范围.
考点:对数函数的图像与性质
专题:函数的性质及应用
分析:(1)x2-x-1>0⇒x>
1+
5
2
或x<
1-
5
2
,由此能求出其定义域.
(2)由于f(x)值城为R,因此其真数N(x)=x2-mx-m应能取遍所有的正数,结合二次函数N(x)图象能求出m的范围.
解答: 解:(1)x2-x-1>0⇒x>
1+
5
2
或x<
1-
5
2

因此函数f(x)=log
1
2
(x2-mx-m)的定义域为(-∞,
1-
5
2
)∪(
1+
5
2
,+∞)
(2)由于f(x)值城为R,
因此其真数N(x)=x2-mx-m应能取遍所有的正数,
结合二次函数N(x)图象易知△≥0,
∴m≤-4,或m≥0,
即m∈(-∞,-4)∪(0,+∞).
点评:本题考查对数函数的定义域、值域、最值和单调性的应用,解题时要充分运用对数函数的性质求解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

1400°=
 
弧度.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对的边分别为a,b,c,若a+c=2b,则cosA+cosB-cosAcosC+
1
3
sinAsinC=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知m>n,a>b>0,比较ambn与anbm的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

设A1,A2,…,An是平面上的n个不同的点,则满足
MA1
+
MA2
+…+
MAn
=
0
的点M的个数为(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

关于x的不等式组
2x+1≥0
x+a>0
2x+1<(x+a)2
的解集为{x|x>m},则m的最小值为
 
,此时a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若x>0,则
12
x
+x的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若集合A中有m个元素,集合B中有n个元素,则从集合A到集合B的映射共有
 
个.

查看答案和解析>>

科目:高中数学 来源: 题型:

为了解学生喜欢数学是否与性别有关,对50个学生进行了问卷调查得到了如下的列联表:
喜欢数学不喜欢数学合计
男生5
女生10
合计50
已知在全部50人中随机抽取1人抽到喜欢数学的学生的概率为
3
5

(1)请将上面的列联表补充完整(不用写计算过程);
(2)是否有99.5%的把握认为喜欢数学与性别有关?说明你的理由;
(3)现从女生中抽取2人进一步调查,设其中喜欢数学的女生人数为X,求X的分布列与期望.
下面的临界值表供参考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(参考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d)

查看答案和解析>>

同步练习册答案