精英家教网 > 高中数学 > 题目详情

【题目】近期,西安公交公司分别推出支付宝和微信扫码支付乘车活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用扫码支付.某线路公交车队统计了活动刚推出一周内每一天使用扫码支付的人次,表示活动推出的天数,表示每天使用扫码支付的人次(单位:十人次),统计数据如表下所示:

根据以上数据,绘制了散点图.

1)根据散点图判断,在推广期内,均为大于零的常数),哪一个适宜作为扫码支付的人次关于活动推出天数的回归方程类型?(给出判断即可,不必说明理由);

2)根据(1)的判断结果及表1中的数据,建立的回归方程,并预测活动推出第8天使用扫码支付的人次;

3)推广期结束后,车队对乘客的支付方式进行统计,结果如下表:

西安公交六公司车队为缓解周边居民出行压力,以万元的单价购进了一批新车,根据以往的经验可知,每辆车每个月的运营成本约为万元.已知该线路公交车票价为元,使用现金支付的乘客无优惠,使用乘车卡支付的乘客享受折优惠,扫码支付的乘客随机优惠,根据统计结果得知,使用扫码支付的乘客中有的概率享受折优惠,有的概率享受折优惠,有的概率享受折优惠.预计该车队每辆车每个月有万人次乘车,根据所给数据以事件发生的频率作为相应事件发生的概率,在不考虑其它因素的条件下,按照上述收费标准,假设这批车需要)年才能开始盈利,求的值.

参考数据:

其中其中

参考公式:对于一组数据,其回归直线的斜率和截距的最小二乘估计公式分别为:.

【答案】(1)(2),3470(3)7

【解析】

1)由散点图可知,更接近指数增长,所以适宜作为扫码支付的人次关于活动推出天数的回归方程类型.

2)根据(1)的判断结果两边取对数得,则两者线性相关,根据已知条件求出得回归方程,进而得到y关于x的回归方程,再令,求预测值

3)设一名乘客一次乘车的费用为元,根据题意得可能取值为:1.41.61.82,求出分布列,进而求得期望,然后再建立不等式求解.

1)根据散点图判断,在推广期内, 均为大于零的常数),适宜作为扫码支付的人次关于活动推出天数的回归方程类型.

2)根据(1)的判断结果

两边取对数得

其中

所以

所以

时,

所以活动推出第8天使用扫码支付的人次3470.

3)设一名乘客一次乘车的费用为元,

根据题意得可能取值为:1.41.61.82

假设这批车需要)年才能开始盈利,

解得

所以需要7年才能开始盈利.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,矩形中,,,的中点,点,分别在线段,上运动(其中不与,重合,不与,重合),且,沿折起,得到三棱锥,则三棱锥体积的最大值为__________;当三棱锥体积最大时,其外接球的表面积的值为_______________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列)的各项均为正整数,且.若对任意,存在正整数使得,则称数列具有性质.

1)判断数列与数列是否具有性质;(只需写出结论)

2)若数列具有性质,且,求的最小值;

3)若集合,且(任意.求证:存在,使得从中可以选取若干元素(可重复选取)组成一个具有性质的数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.是自然对数的底数)

1)求的单调递减区间;

2)若函数,证明上只有两个零点.(参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】农历五月初五是端午节,民间有吃粽子的习惯,粽子又称粽籺,俗称粽子,古称角黍,是端午节大家都会品尝的食品,传说这是为了纪念战国时期楚国大臣、爱国主义诗人屈原.如图,平行四边形形状的纸片是由六个边长为1的正三角形构成的,将它沿虚线折起来,可以得到如图所示粽子形状的六面体,则该六面体的体积为____;若该六面体内有一球,则该球体积的最大值为____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年春节期间,某服装超市举办了一次有奖促销活动,消费每超过600元(含600元),均可抽奖一次,抽奖方案有两种,顾客只能选择其中的一种.

方案一:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,一次性摸出3个球,其中奖规则为:若摸到3个红球,享受免单优惠;若摸出2个红球则打6折,若摸出1个红球,则打7折;若没摸出红球,则不打折.

方案二:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,有放回每次摸取1球,连摸3次,每摸到1次红球,立减200元.

(1)若两个顾客均分别消费了600元,且均选择抽奖方案一,试求两位顾客均享受免单优惠的概率;

(2)若某顾客消费恰好满1000元,试从概率的角度比较该顾客选择哪一种抽奖方案更合算?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,函数,函数

1)当函数时为减函数,求a的范围;

2)若a=e(e为自然对数的底数);

求函数g(x)的单调区间;

证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为为参数).以坐标原点为极点,轴的非负半轴为极轴且取相同的单位长度建立极坐标系,圆的极坐标方程为.

(1)求直线的普通方程与圆的直角坐标方程;

(2)设动点在圆上,动线段的中点的轨迹为与直线交点为,且直角坐标系中,点的横坐标大于点的横坐标,求点的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数Fx=min{2|x1|x22ax+4a2}

其中min{pq}=

)求使得等式Fx=x22ax+4a2成立的x的取值范围;

)()求Fx)的最小值ma);

)求Fx)在区间[0,6]上的最大值Ma.

查看答案和解析>>

同步练习册答案