精英家教网 > 高中数学 > 题目详情
9.在下列条件中,可判断平面α与β平行的是(  )
A.α⊥γ,且β⊥γ
B.m,n是两条异面直线,且m∥β,n∥β,m∥α,n∥α
C.m,n是α内的两条直线,且m∥β,n∥β
D.α内存在不共线的三点到β的距离相等

分析 通过举反例推断A、C、D是错误的,即可得到结果.

解答 解:A中:教室的墙角的两个平面都垂直底面,但是不平行,错误.
B中,利用平面与平面平行的判定,可得正确;
C中:如果这两条直线平行,那么平面α与β可能相交,所以C错误.
D中:如果这三个点在平面的两侧,满足不共线的三点到β的距离相等,这两个平面相交,B错误.
故选B.

点评 本题考查平面与平面平行的判定,考查空间想象能力,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知α,β都是锐角,且cosβ=$\frac{8}{17}$,cos(α+β)=-$\frac{4}{5}$,求sinα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)经过点$M(1,\frac{{\sqrt{2}}}{2})$,且其离心率为$\frac{{\sqrt{2}}}{2}$.
(1)求椭圆C的方程;
(2)若F为椭圆C的右焦点,椭圆C与y轴的正半轴相交于点B,经过点B的直线与椭圆C相交于另一点A,且满足$\overrightarrow{BA}•\overrightarrow{BF}$=2,求点A的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)满足对于任意x>0,都有f(x)+2f($\frac{1}{x}$)=logax+$\frac{x}{lna}$+$\frac{2}{xlna}$(a>0,a≠1).
(1)求f(x)的极值;
(2)设f(x)的导函数为f′(x),试比较f(x)与f′(x)的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知a=1.5-0.2,b=1.30.7,c=$(\frac{2}{3})^{\frac{1}{3}}$则a,b,c的大小为(  )
A.c<a<bB.c<b<aC.a<b<cD.a<c<b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.球O所在球面上有A,B,C三点,球心O到平面ABC的距离为2,∠ABC=$\frac{π}{2}$,AB=BC=$\sqrt{2}$,则球O的表面积为(  )
A.12πB.16πC.20πD.32π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.某公司每生产一批产品都能维持一段时间的市场供应,若公司本次新产品生产x月后,公司的存货量大致满足模型f(x)=-3x3+12x+8,那么下次生产应在多长时间后开始?(  )
A.1个月后B.2个月后C.3个月后D.4个月后

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\frac{\sqrt{3}}{2}$sin2x-cos2x-$\frac{1}{2}$,x∉R.
(1)求函数f(x)的最小正周期,最大值,最小值;
(2)求函数f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.某单位有职工750人,其中青年职工420人,中年职工210人,老年职工120人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本,若样本中的青年职工为14人,则样本容量为(  )
A.7B.15C.25D.35

查看答案和解析>>

同步练习册答案