精英家教网 > 高中数学 > 题目详情
(2011•温州二模)已知F是椭圆
x2
a2
+
y2
b2
=1
(a>0,b>0)的左焦点,若椭圆上存在点P,使得直线PF与圆x2+y2=b2相切,当直线PF的倾斜角为
3
,则此椭圆的离心率是(  )
分析:求出椭圆的左焦点,进而可设直线方程,利用直线l为圆O:x2+y2=b2的一条切线,可得一方程,利用椭圆的简单性质a2=b2+c2,根据离心率公式即可求出e的值.
解答:解:设椭圆的左焦点为(-c,0),c=
a2-b2

∵直线PF的倾斜角为
3

则直线PF的方程为
3
x+y+
3
c=0

∵直线PF为圆O:x2+y2=b2的一条切线
|
3
c|
2
=b
,即b=
3
2
c

a2=b2+c2=
7
4
c2

e=
c
a
=
2
7
7

故选A.
点评:本题以椭圆为载体,考查椭圆的离心率,考查圆的切线问题,有一定的综合性.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•温州二模)某程序框图如图所示,则该程序运行后输出的S的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•温州二模)下列函数中,在(0,1)上有零点的函数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•温州二模)已知定义在R上的函数y=f(x)为奇函数,且y=f(x+1)为偶函数,f(1)=1,则f(3)+f(4)=
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•温州二模)函数f(x)=
1
3
x3-
1
2
ax2+
2
27
x+1
的极值点是x1,x2,函数g(x)=x-alnx的极值点是x0,若x0+x1+x2<2.
(I )求实数a的取值范围;
(II)若存在实数a,使得对?x3,x4∈[1,m],不等式f(x3)≤g(x4)恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案