精英家教网 > 高中数学 > 题目详情
7.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左顶点为A,上项点为B,M(1,0),N(n,0),|MB|=$\sqrt{2}$,|AM|=3.过点M作直线l(与x轴不重合),直线l与椭圆C相交于P,Q两点,且有NP⊥NQ.
(Ⅰ)求椭圆C的方程;
(Ⅱ)求实数n的取值范围.

分析 (Ⅰ)由条件M(1,0),|MB|=$\sqrt{2}$,可知b=1,再由|AM|=3,可得a=2,进而得到椭圆方程;
(Ⅱ)讨论当直线l斜率不存在时,直线的斜率垂直,求出直线方程,联立椭圆方程,运用韦达定理和向量垂直的条件:数量积为0,解不等式可得a的范围.

解答 解:(Ⅰ)B为上项点,M(1,0),|MB|=$\sqrt{2}$,可知b=1,
又|AM|=3,且左顶点为A,所以a=2,
所以椭圆方程为$\frac{{x}^{2}}{4}$+y2=1;
(Ⅱ)当直线l斜率不存在时,方程为x=1,易得P(1,$\frac{\sqrt{3}}{2}$),Q(1,-$\frac{\sqrt{3}}{2}$),
因为NP⊥NQ,所以N在以M为圆心,$\frac{\sqrt{3}}{2}$为半径的圆上,又N(n,0),
所以可得n=1-$\frac{\sqrt{3}}{2}$或n=1+$\frac{\sqrt{3}}{2}$;
当直线l斜率存在且不为0时,设方程为y=k(x-1),联立$\frac{{x}^{2}}{4}$+y2=1可得,
(1+4k2)x2-8k2x+4k2-4=0,
设P(x1,y1),Q(x2,y2),所以x1+x2=$\frac{8{k}^{2}}{1+4{k}^{2}}$,x1x2=$\frac{4{k}^{2}-4}{1+4{k}^{2}}$,(*)
因为NP⊥NQ,所以$\overrightarrow{NP}$•$\overrightarrow{NQ}$=0,即(x1-n)(x2-n)+y1y2=0,
所以(1+k2)x1x2-(n+k2)(x1+x2)+n2+k2=0,
将(*)式代入整理得(4n2-8n+1)k2+n2-4=0,
所以k2=$\frac{4-{n}^{2}}{4{n}^{2}-8n+1}$>0,可得-2<n<1-$\frac{\sqrt{3}}{2}$或1+$\frac{\sqrt{3}}{2}$<n<2;
综上可知:-2<n≤1-$\frac{\sqrt{3}}{2}$或1+$\frac{\sqrt{3}}{2}$≤n<2.

点评 本题考查椭圆方程的求法,考查直线和椭圆的位置关系,注意联立直线方程和椭圆方程,运用韦达定理,以及向量垂直的条件:数量积为0,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需要维修),其他三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为x(单位:米),修建此矩形场地围墙的总费用为y(单位:元).
(1)将y表示为x的函数;
(2)写出函数f(x)=y的单调区间,并证明;
(3)根据(2),试确定x,试修建此矩形场地围墙的总费用最小,并求出最小总费用.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在△ABC中,内角A、B、C的对边分别为a、b、c,且b2=a2+bc,A=$\frac{π}{6}$,D点在边AC上,当线段BD的长最小,则$\frac{CD}{AB}$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知f(x)是偶函数,且x≥0时,f(x)=3x,则f(-2)=9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=4x3-3x2cosθ+$\frac{3}{16}$cosθ其中x∈R,θ为参数,且0≤θ≤2π.
(1)当cosθ=0时,判断函数f(x)是否有极值;
(2)要使函数f(x)的极小值大于零,求参数θ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知圆C1:x2+y2=$\frac{2}{5}$,直线l:y=x+m(m>0)与圆C1相切,且交椭圆C2:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)于A1,B1两点,c是椭圆C2的半焦距,c=$\sqrt{3}$b.
(1)求m的值;
(2)O为坐标原点,若$\overrightarrow{O{A}_{1}}$⊥$\overrightarrow{O{B}_{1}}$,求椭圆C2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若一个n面体有m个面时直角三角形,则称这个n面体的直度为$\frac{m}{n}$,则四面体A1-ABC的直度的最大值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知△ABC中,a,b,c分别为角A,B,C的对应边,A=30°,B=45°,a=7,则边长b为(  )
A.$\frac{7}{2}\sqrt{2}$B.$14\sqrt{2}$C.$7\sqrt{2}$D.$\frac{7}{3}\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在三棱柱ABC-A1B1C1中,CC1⊥底面ABC,CC1⊥底面ABC,AC⊥CB,点D是AB的中点.
(Ⅰ)求证:AC⊥BC1
(Ⅱ)求证:AC1∥平面CDB1
(Ⅲ)设AB=2AA1,AC=BC,在线段A1B1上是否存在点M,使得BM⊥CB1?若存在,确定点M的位置;若不存在,说明理由.

查看答案和解析>>

同步练习册答案