精英家教网 > 高中数学 > 题目详情

【题目】某公司每年生产、销售某种产品的成本包含广告费用支出和浮动成本两部分,该产品的年产量为万件,每年投入的广告费为万元,另外,当年产量不超过万件时,浮动成本为万元,当年产量超过万件时,浮动成本为万元.若每万件该产品销售价格为万元,且每年该产品都能销售完.

1)设年利润为(万元),试求关于的函数关系式;

2)年产量为多少万件时,该公司所获利润最大?并求出最大利润.

【答案】1

2)当年产量万件时,该公司所获利润了最大,最大利润为万元.

【解析】

1)直接由题意列分段函数可得函数的解析式;

2)分段利用配方法与双勾函数的单调性求最值,比较大小后可得出结论.

1)由题意可得,当时,

时,.

因此,

2)当时,

时,(万元);

时,

对于函数,任取

,所以,

所以,函数在区间上为减函数,

同理可证函数在区间上为增函数,

所以,函数在区间上为增函数,在区间上为减函数,

时,(万元).

综上,当年产量万件时,该公司所获利润最大,最大利润为万元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某高校共有15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时)

(1)应收集多少位女生样本数据?

(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据分组区间为:.估计该校学生每周平均体育运动时间超过4个小时的概率.

(3)在样本数据中,有60位女生的每周平均体育运动时间超过4个小时.请完成每周平均体育运动时间与性别的列联表,并判断是否有的把握认为该校学生的每周平均体育运动时间与性别有关.

附:

0.10

0.05

0.010

0.005

2.706

3.841

6.635

7.879

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是椭圆上的两点,且,其中为椭圆的右焦点.

1)求实数的取值范围;

2)在轴上是否存在一个定点,使得为定值?若存在,求出定值和定点坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的一块木料中,棱平行于面.

1)要经过面内的一点P和棱将木料锯开,在木料表面应该怎样画线?

2)所画的线与平面是什么位置关系?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面个说法中正确的序号为_____

①函数有两个零点;

②函数的图象关于点对称;

③若是第三象限角,则的取值集合为

④锐角三角形中一定有

⑤已知),同一平面内有四个不同的点,若,则必定三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在数列中,若 (为常数),则称为“等方差数列”.下列对“等方差数列”的判断:

是等方差数列,则是等差数列;

是等方差数列;

是等方差数列,则 (为常数)也是等方差数列.其中正确命题序号为

__________(写出所有正确命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知(是常数,).

(1)当时,求不等式的解集;

(2)若函数恰有两个不同的零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C1的方程为,双曲线C2的左、右焦点分别是C1的左、右顶点,而C2的左、右顶点分别是C1的左、右焦点,O为坐标原点.

(1)求双曲线C2的方程;

(2)若直线lykx与双曲线C2恒有两个不同的交点AB,且,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求满足的取值;

(2)若函数是定义在上的奇函数

①存在,不等式有解,求的取值范围;

②若函数满足,若对任意,不等式恒成立,求实数的最大值.

查看答案和解析>>

同步练习册答案