精英家教网 > 高中数学 > 题目详情
17.已知两个单位向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$满足$\overrightarrow{{e}_{1}}$⊥($\sqrt{2}$$\overrightarrow{{e}_{2}}$-$\overrightarrow{{e}_{1}}$),则单位向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$的夹角为$\frac{π}{4}$.

分析 运用向量垂直的条件:数量积为0,再由向量的数量积的定义和向量的平方即为模的平方,计算即可得到所求夹角.

解答 解:由$\overrightarrow{{e}_{1}}$⊥($\sqrt{2}$$\overrightarrow{{e}_{2}}$-$\overrightarrow{{e}_{1}}$),可得
$\overrightarrow{{e}_{1}}$•($\sqrt{2}$$\overrightarrow{{e}_{2}}$-$\overrightarrow{{e}_{1}}$)=0,即有$\sqrt{2}$$\overrightarrow{{e}_{1}}$•$\overrightarrow{{e}_{2}}$=$\overrightarrow{{e}_{1}}$2=1,
即$\sqrt{2}$•1•1•cos<$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$>=1,
即为cos<$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$>=$\frac{\sqrt{2}}{2}$,
由0≤<$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$>≤π,可得<$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$>=$\frac{π}{4}$.
故答案为:$\frac{π}{4}$.

点评 本题考查向量的数量积的定义和性质,主要考查向量的模即为向量的平方,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.在锐角三角形ABC中,a,b,c分别是角A,B,C的对边,向量$\overrightarrow{m}$=(cosC,2b-c),向量$\overrightarrow{n}$=(cosA,a),且$\overrightarrow{m}$∥$\overrightarrow{n}$
(Ⅰ)求角A的大小;
(Ⅱ)求函数f(C)=2sin2C+cos($\frac{π}{3}$-2C)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知F1、C、D分别是椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点、上顶点、右顶点,过坐标原点的直线交椭圆E于点A,B,|AF1|+|BF1|=4,$\overrightarrow{{F}_{1}C}$•$\overrightarrow{CD}$=2$\sqrt{3}$-1.
(1)求椭圆E的方程;
(2)若过M(1,0)且斜率为$\frac{1}{2}$的直线1交椭圆E于P,Q两点,求△OPQ的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设全集U=R,集合A={x|x=2},则∁UA=(-∞,2)∪(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知sinα+cosα=$\frac{4}{5}$,求sinαcosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知F1,F2是椭圆的两个焦点,过F1且与椭圆长轴垂直的直线交椭圆于A,B两点,若△ABF2是正三角形,求椭圆的离心率.
本例中将条件“过F1且与椭圆长轴垂直的直线交椭圆于A,B两点,若△ABF2是正三角形”改为“A为y轴上一点,AF1的中点恰好在椭圆上,若△AF1F2为正三角形”,如何求椭圆的离心率?
“若△ABF2是正三角形”换成“椭圆的焦点在x轴上,且A点的纵坐标等于短半轴长的$\frac{2}{3}$”求椭圆的离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知向量$\overrightarrow{a}$与$\overrightarrow{b}$同向.且$\overrightarrow{a}$•$\overrightarrow{b}$=10,$\overrightarrow{b}$=(1,2),求向量$\overrightarrow{a}$的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在平行四边形ABCD中,AD=1,∠BAD=60°,E为CD的中点,若$\overrightarrow{AC}$•$\overrightarrow{BE}$=1,则BD的长为$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数$f(x)={log_{\frac{1}{2}}}(-{x^2}+5x-6)$的单调减区间是$(2,\frac{5}{2})$.

查看答案和解析>>

同步练习册答案