精英家教网 > 高中数学 > 题目详情
用反证法证明命题:“若,那么中至少有一个不小于”时,反设正确的是(     )
A.假设至多有两个小于
B.假设至多有一个小于
C.假设都不小于
D.假设都小于
D

试题分析:根据题意,由于反证法证明命题:“若,那么中至少有一个不小于”时,即将结论变为否定就是对命题的反设,因此可知至少有一个的否定是一个也没有,或者说假设都小于,故选D.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知x∈R,a=x2,b=2-x,c=x2-x+1,试证明a,b,c至少有一个不小于1.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

是一个自然数,的各位数字的平方和,定义数列是自然数,).
(1)求
(2)若,求证:
(3)当时,求证:存在,使得

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列{an}满足a1λan+1ann-4,λ∈R,n∈N,对任意λ
∈R,证明:数列{an}不是等比数列.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知.经计算得,通过观察,我们可以得到一个一般性的结论.
(1)试写出这个一般性的结论;
(2)请用数学归纳法证明这个一般性的结论;
(3)对任一给定的正整数,试问是否存在正整数,使得
若存在,请给出符合条件的正整数的一个值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

边长为a的正三角形内任一点到三边距离之和为定值
3
2
a
,类比到空间,棱长均为a的三棱锥内任一点到各面距离之和为(  )
A.
3
a
3
B.
6
a
2
C.
6
a
3
D.
2
a
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

用反证法证明命题“三角形的内角至多有一个钝角”时,假设的内容应为( )
A.假设至少有一个钝角B.假设至少有两个钝角
C.假设没有一个钝角D.假设没有一个钝角或至少有两个钝角

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

分析法又称执果索因法,若用分析法证明:“设a>b>c,且a+b+c=0,求证 <a”索的因应是(  )
A.a-b>0B.a-c>0
C.(a-b)(a-c)>0D.(a-b)(a-c)<0

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

用反证法证明“自然数a,b,c中恰有一个偶数”时,下列假设正确的是   (   )
A.假设a,b,c都是奇数或至少有两个偶数
B.假设a,b,c都是偶数
C.假设a,b,c至少有两个偶数
D.假设a, b,c都是奇数

查看答案和解析>>

同步练习册答案