精英家教网 > 高中数学 > 题目详情
已知圆C1:x2+y2=1,圆C2:(x-4)2+y2=4
(1)判断两圆位置关系;
(2)若直线l为过点P(3,0)且与圆C1相切的直线,求直线l的方程;
(3)在x轴上是否存在一定点Q(m,0),使得过Q点且与两圆都相交的直线被两圆所截得的弦长始终相等?若存在,求出Q点的坐标,若不存在,请说明理由.
分析:(1)由于两圆的圆心距|C1C2 |=4,大于两圆的半径之和,故两圆相离.
(2)由题意知,直线的斜率是存在的,由点斜式设出直线l的方程,由圆心C1 到直线l的距离等于半径,解方程求得
斜率k的值,即得直线l的方程.
(3)由题意知与两圆都相交的直线的斜率是存在的,由点斜式设出直线l的方程,设原点(0,0)和点(4,0)到该直线的距离分别为d1,d2,由题意可得
1-d12
=
1-d22
,化简可得(13-8m)k2=3恒成立,即13-8m=0,且3=0,矛盾.
从而得到结论.
解答:解:(1)由于圆C1:x2+y2=1,圆C2:(x-4)2+y2=4的圆心C1 (0,0),C2(4,0),半径分别为1和2.
两圆的圆心距|C1C2 |=4,大于两圆的半径之和,故两圆相离.
(2)由题意知,直线的斜率是存在的,设直线l的斜率为k,
则直线l的方程为 y-0=k(x-3),即kx-y-3k=0.
由圆心C1 到直线l的距离等于半径可得 1=
|0-0-3k|
k2+1
,∴k=±
2
4

故直线l的方程为
2
4
x-y-
3
2
4
=0,或
2
4
x+y-
3
2
4
=0.
(3)由题意知与两圆都相交的直线的斜率是存在的,
故可以设其方程为y-0=k(x-m),即kx-y-km=0.设原点(0,0)和点(4,0)到该直线的距离分别为d1,d2,由题意可得
1-d12
=
1-d22

即 d22-d12=3,∴(
|4k-km|
1+k2
)
2
-(
|km|
1+k2
)
2
=3,
即16k2-8k2m=3+3k2,即 (13-8m)k2=3恒成立.
∴13-8m=0,且3=0,矛盾.
故不存在定点Q(m,0),使得过Q点且与两圆都相交的直线被两圆所截得的弦长始终相等.
点评:本题主要考查两圆的位置关系的判定方法,直线和圆相交的性质,函数的恒成立问题,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•惠州二模)已知圆C1:x2+y2=2和圆C2,直线l与C1切于点M(1,1),圆C2的圆心在射线2x-y=0(x≥0)上,且C2经过坐标原点,如C2被l截得弦长为4
3

(1)求直线l的方程;
(2)求圆C2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C1x2+y2=2,直线l与圆C1相切于点A(1,1);圆C2的圆心在直线x+y=0上,且圆C2过坐标原点.
(1)求直线l的方程;
(2)若圆C2被直线l截得的弦长为8,求圆C2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C1x2+y2=10与圆C2x2+y2+2x+2y-14=0
(1)求证:圆C1与圆C2相交;
(2)求两圆公共弦所在直线的方程;
(3)求经过两圆交点,且圆心在直线x+y-6=0上的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C1:x2+(y+5)2=5,设圆C2为圆C1关于直线l对称的圆,则在x轴上是否存在点P,使得P到两圆的切线长之比为
2
?荐存在,求出点P的坐标;若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宁波模拟)如图,已知圆C1x2+(y-1)2=4和抛物线C2:y=x2-1,过坐标原点O的直线与C2相交于点A、B,定点M坐标为(0,-1),直线MA,MB分别与C1相交于点D、E.
(1)求证:MA⊥MB.
(2)记△MAB,△MDE的面积分别为S1、S2,若
S1S2
,求λ的取值范围.

查看答案和解析>>

同步练习册答案