【题目】已知函数f(x)=x2﹣2x﹣8,g(x)=2x2﹣5x﹣18
(1)求不等式g(x)<0的解集
(2)若对一切x>2,均有f(x)≥(m+2)x﹣m﹣15成立,求实数m的取值范围.
【答案】
(1)解:g(x)=2x2﹣5x﹣18<0
∴(2x﹣9)(x+2)<0解得 ,
∴不等式g(x)<0的解集为
(2)解:解法一:∵f(x)=x2﹣2x﹣8当x>2时,f(x)≥(m+2)x﹣m﹣15恒成立,
∴x2﹣2x﹣8≥(m+2)x﹣m﹣15,即x2﹣4x+7≥m(x﹣1),
∴对一切x>2,均有不等式 成立.
而 (当x=3时等号成立).
∵x>2,
∴实数m的取值范围是(﹣∞,2].
解法二:∵f(x)=x2﹣2x﹣8当x>2时,f(x)≥(m+2)x﹣m﹣15恒成立,
即x2﹣(m+4)x+m+7≥0对x>2恒成立
令h(x)=x2﹣(m+4)x+m+7,
△=(m+4)2﹣4(m+7)=m2+4m﹣12=(m+6)(m﹣2)
①当h(x)图象与x轴没有交点或只有一个交点时,△≤0即﹣6≤m≤2时满足条件
②当h(x)图象与x轴有两个交点时,则有 即
综上所述,实数m的取值范围是(﹣∞,2]
【解析】(1)直接因式分解后求解不等式的解集;(2)解法一:把函数f(x)的解析式代入f(x)≥(m+2)x﹣m﹣15,分离变量m后利用基本不等式求解m的取值范围.解法二:构造函数h(x)=x2﹣(m+4)x+m+7,根据方程根的问题,分类讨论即可求出.
【考点精析】根据题目的已知条件,利用二次函数的性质的相关知识可以得到问题的答案,需要掌握当时,抛物线开口向上,函数在上递减,在上递增;当时,抛物线开口向下,函数在上递增,在上递减.
科目:高中数学 来源: 题型:
【题目】某大学志愿者协会有6名男同学,4名女同学,在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院,现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).
(1)求选出的3名同学是来自互不相同学院的概率;
(2)设X为选出的3名同学中女同学的人数,求随机变量X的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(1)求函数的极值;
(2)若时,函数有且只有一个零点,求实数的值;
(3若,对于区间上的任意两个不相等的实数,都有成立,求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com