精英家教网 > 高中数学 > 题目详情

(本小题满分12分)如图,矩形所在平面与平面垂直,,且上的动点.

(Ⅰ)当的中点时,求证:
(Ⅱ)若,在线段上是否存在点E,使得二面角的大小为. 若存在,确定点E的位置,若不存在,说明理由.

(1)根据已知条件当中点时,,              
从而为等腰直角三角形,∴,同理可得,∴
于是,再结合又平面平面,得到平面得到证明。 (2) 点在线段BC上距B

解析试题分析:方法一:不妨设,则.
(Ⅰ)证明:当中点时,,              
从而为等腰直角三角形,∴
同理可得,∴
于是,                        
又平面平面
平面平面
平面,  
 ,又,∴.………………6分
(Ⅱ)若线段上存在点,使二面角
过点,连接,由⑴ 所以

为二面角的平面角,
…………………………..8分
, 则,在中由,则,在,所以,所以线段上存在点,当时,二面角。                                       .12分
方法二:∵平面平面,平面平面平面
为原点,所在直线为轴,建立空间直角坐标系如图.

(Ⅰ)不妨设,AB=1 

从而

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题满分12分)
如图,四棱锥P—ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点。

(1)求证:CD⊥AE;
(2)求证:PD⊥面ABE。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知直三棱柱中,△为等腰直角三角形,∠ =,且分别为的中点.

(1)求证:∥平面
(2)求证:⊥平面
(3)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)如图所示,在直三棱柱ABC-A1B1C1中,AC⊥BC.

(1) 求证:平面AB1C1⊥平面AC1
(2) 若AB1⊥A1C,求线段AC与AA1长度之比;
(3) 若D是棱CC1的中点,问在棱AB上是否存在一点E,使DE∥平面AB1C1?若存在,试确定点E的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,等腰△ABC的底边AB=6,高CD=3,点E是线段BD上异于点B、D的动点.点F在BC边上,且EF⊥AB.现沿EF将△BEF折起到△PEF的位置,使PE⊥AE.记,用表示四棱锥P-ACFE的体积.

(Ⅰ)求 的表达式;
(Ⅱ)当x为何值时,取得最大值?
(Ⅲ)当V(x)取得最大值时,求异面直线AC与PF所成角的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
在四棱锥中,//平面.

(Ⅰ)设平面平面,求证://
(Ⅱ)求证:平面
(Ⅲ)设点为线段上一点,且直线与平面所成角的正弦值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分10分)
如图,已知三棱锥OABC的侧棱OAOBOC两两垂直,且OA=2,OB=3,OC=4,EOC的中点.

(1)求异面直线BEAC所成角的余弦值;
(2)求二面角ABEC的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题10分)三棱柱中,侧棱底面

(1)求异面直线所成角的余弦值;
(2)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图,直三棱柱ABCA1B1C1中,ACBC=1,∠ACB=90°,AA1DA1B1中点.

(1)求证:C1DAB1 ;
(2)当点FBB1上什么位置时,会使得AB1⊥平面C1DF?并证明你的结论.

查看答案和解析>>

同步练习册答案