精英家教网 > 高中数学 > 题目详情
3.函数f(x)=sin(ωx+φ)(ω<0,|φ|<$\frac{π}{2}$)的部分图象如图所示,将y=f(x)的图象向右平移$\frac{π}{4}$个单位长度后得到函数y=g(x)的图象.
(1)求函数y=g(x)的解析式;
(2)在△ABC中,内角A,B,C满足2sin2$\frac{A+B}{2}$=g(C+$\frac{π}{3}$)+1,且其外接圆的半径为1,求△ABC的面积的最大值.

分析 (1)由图知周期T,利用周期公式求出ω,由f($\frac{π}{12}$)=1,结合|φ|<$\frac{π}{2}$求出φ,
利用三角函数图象平移求出g(x)的解析式;
(2)利用三角函数恒等变换与三角形内角和定理,化简求C的值,
由正弦、余弦定理,基本不等式求出ab≤1,从而求出三角形面积的最大值.

解答 解:(1)由图知,$\frac{2π}{ω}$=4×($\frac{π}{12}$+$\frac{π}{6}$),解得ω=2;
∵f($\frac{π}{12}$)=sin(2×$\frac{π}{12}$+φ)=1,
∴2×$\frac{π}{12}$+φ=2kπ+$\frac{π}{2}$,k∈Z,
解得φ=2kπ+$\frac{π}{3}$,k∈Z,
由于|φ|<$\frac{π}{2}$,因此φ=$\frac{π}{3}$;
∴f(x)=sin(2x+$\frac{π}{3}$),
∴f(x-$\frac{π}{4}$)=sin[2(x-$\frac{π}{4}$)+$\frac{π}{3}$]=sin(2x-$\frac{π}{6}$),
即函数y=g(x)的解析式为g(x)=sin(2x-$\frac{π}{6}$);
(2)∵2sin2$\frac{A+B}{2}$=g(C+$\frac{π}{3}$)+1,
∴1-cos(A+B)=1+sin(2C+$\frac{π}{2}$),
∵cos(A+B)=-cosC,sin(2C+$\frac{π}{2}$)=cos2C,
cosC=cos2C,即cosC=2cos2C-1,
所以cosC=-$\frac{1}{2}$或1(不合题意舍去),
可得:C=$\frac{2π}{3}$;
由正弦定理得$\frac{c}{sinC}$=2R=2,解得c=$\sqrt{3}$,
由余弦定理得cosC=$\frac{{a}^{2}{+b}^{2}{-c}^{2}}{2ab}$=-$\frac{1}{2}$,
∴a2+b2=3-ab≥2ab,ab≤1,(当且仅当a=b等号成立),
∴S△ABC=$\frac{1}{2}$absinC=$\frac{\sqrt{3}}{4}$ab≤$\frac{\sqrt{3}}{4}$,
∴△ABC面积最大值为$\frac{\sqrt{3}}{4}$.

点评 本题考查了三角函数周期公式、图象平移与三角函数恒等变换、内角和定理以及正弦、余弦定理,基本不等式的应用问题,是综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)的导函数f'(x),且满足f(x)=2xf'(1)+lnx,则f′(1)=(  )
A.-1B.-eC.1D.e

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.一个样本a,99,b,101,c中5个数恰好构成等差数列,则这个样本的标准差为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在等差数列{an}中,已知d=$\frac{1}{2}$,a1=-3,Sn=$\frac{15}{2}$,则an=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知三棱锥A-BCD中,AB=AC=3,BD=CD=$\sqrt{2}$,且BD⊥CD,若点A在平面BCD内的投影恰好为点D,则此三棱锥外接球的表面积为11π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设等差数列{an}的前n项和为Sn,若a3=10,S4=36,则公差d为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设$f(x)=\left\{\begin{array}{l}{x^2}({0≤x<1})\\ 2-x({1≤x≤2})\end{array}\right.$则$\int_0^2{f(x)}dx$等于(  )
A.$\frac{3}{4}$B.$\frac{4}{5}$C.$\frac{5}{6}$D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图所示,已知P是?ABCD所在平面外一点,M,N分别是AB,PC的中点,平面PAD∩平面PBC=l.
求证:(1)l∥BC.
(2)MN∥平面PAD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.(理科)如图,在空间四面体ABCD中,若E,F,G,H分别是AB,BD,CD,AC的中点,且AD⊥BC
(1)求证:四边形EFGH是矩形.
(2)求证:AD∥平面EFGH.

查看答案和解析>>

同步练习册答案