精英家教网 > 高中数学 > 题目详情

【题目】(本题满分12分)

已知椭圆的中心在原点,焦点在轴上,椭圆上的点到焦点的距离的最

小值为,离心率为

(I)求椭圆的方程;

)过点(1,0)作直线两点,试问:在轴上是否存在一个定点,使为定值?若存在,求出这个定点的坐标;若不存在,请说明理由。

【答案】

:(I)设椭圆E的方程为

由已知得:

2分

椭圆E的方程为················································3分

)解:假设存在符合条件的点,又设,则:

···················································5分

当直线的斜率存在时,设直线的方程为:,则

7分

所以

·················································9分

对于任意的值,为定值,

所以,得

所以······················································11分

当直线的斜率不存在时,直线

综上述①②知,符合条件的点存在,起坐标为························12分

【解析】

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在某服装商场,当某一季节即将来临时,季节性服装的价格呈现上升趋势.设一种服装原定价为每件70元,并且每周(7天)每件涨价6元,5周后开始保持每件100元的价格平稳销售;10周后,当季节即将过去时,平均每周每件降价6元,直到16周末,该服装不再销售.

(1)试建立每件的销售价格(单位:元)与周次之间的函数解析式;

(2)若此服装每件每周进价(单位:元)与周次之间的关系为,试问该服装第几周的每件销售利润最大?(每件销售利润=每件销售价格-每件进价)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数且点在函数的图象上.

1)求函数的解析式,并在图中的直角坐标系中画出函数的图象;

2)求不等式的解集;

3)若方程有两个不相等的实数根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线x2=1.

(1)若一椭圆与该双曲线共焦点,且有一交点P(2,3),求椭圆方程.

(2)设(1)中椭圆的左、右顶点分别为AB,右焦点为F,直线l为椭圆的右准线,Nl上的一动点,且在x轴上方,直线AN与椭圆交于点M.若AMMN,求AMB的余弦值;

(3)设过AFN三点的圆与y轴交于PQ两点,当线段PQ的中点为(0,9)时,求这个圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在创建“全国文明卫生城”过程中,某市“创城办”为了调查市民对创城工作的了解情况,进行了一次创城知识问卷调查(一位市民只能参加一次).通过随机抽样,得到参加问卷调查的1000人的得分(满分100分)统计结果如下表所示.

组别

频数

25

150

200

250

225

100

50

(1)由频数分布表可以大致认为,此次问卷调查的得分服从正态分布 近似为这1000人得分的平均值值(同一组数据用该组数据区间的中点值表示),请用正态分布的知识求

(2)在(1)的条件下,“创城办”为此次参加问卷调查的市民制定如下奖励方案::

(ⅰ)得分不低于的可以获赠2次随机话费,得分低于的可以获赠1次随机话费;

(ⅱ)每次获赠送的随机话费和对应的概率为:

赠送的随机话费(单元:元)

20

40

概率

0.75

0.25

现有市民甲要参加此次问卷调查,记 (单位:元)为该市民参加问卷调查获赠的话费,求的分布列与数学期望.

附:参考数据与公式

,若,则

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知分别是双曲线的左顶点、右焦点,过的直线的一条渐近线垂直且与另一条渐近线和轴分别交于两点.若,则的离心率是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标平面中, 的两个顶点为,平面内两点同时满足:①;②;③

(1)求顶点的轨迹的方程;

(2)过点作两条互相垂直的直线,直线与点的轨迹相交弦分别为,设弦的中点分别为

①求四边形的面积的最小值;

②试问:直线是否恒过一个定点?若过定点,请求出该定点,若不过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数是偶函数.

(1)求不等式的解集;

(2)若不等式对任意实数成立,求实数的取值范围;

(3)设函数,若上有零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= lnxx,其中a>0.

(1)f(x)(0,+∞)上存在极值点,求a的取值范围;

(2)a(1,e],当x1(0,1),x2(1,+∞)时,记f(x2)-f(x1)的最大值为M(a).那么M(a)是否存在最大值?若存在,求出其最大值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案