【题目】我们把定义域为且同时满足以下两个条件的函数称为“函数”:(1)对任意的,总有;(2)若,,则有成立,下列判断正确的是( )
A.若为“函数”,则
B.若为“函数”,则在上为增函数
C.函数在上是“函数”
D.函数在上是“函数”
科目:高中数学 来源: 题型:
【题目】以下判断正确的是 ( )
A. 函数为上的可导函数,则是为函数极值点的充要条件
B. 若命题为假命题,则命题与命题均为假命题
C. 若,则的逆命题为真命题
D. 在中,“”是“”的充要条件
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2-2ax-1+a,a∈R.
(1)若a=2,试求函数y=(x>0)的最小值;
(2)对于任意的x∈[0,2],不等式f(x)≤a成立,试求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)的定义域为R,并且图象关于y轴对称,当x≤-1时,y=f(x)的图象是经过点(-2,0)与(-1,1)的射线,又在y=f(x)的图象中有一部分是顶点在(0,2),且经过点(1,1)的一段抛物线.
(1)试求出函数f(x)的表达式,作出其图象;
(2)根据图象说出函数的单调区间,以及在每一个单调区间上函数是增函数还是减函数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】假设关于某设备的使用年限(年)和所支出的维修费用(万元)有如下统计资料:
/年 | 2 | 3 | 4 | 5 | 6 |
/万元 |
若由资料知, 对呈线性相关关系,试求:
(1)回归直线方程;
(2)估计使用年限为10年时,维修费用约是多少?
参考公式:回归直线方程: .其中
(注: )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数的图象过点,且不等式的解集为.
(1)求的解析式;
(2)若在区间上有最小值,求实数的值;
(3)设,若当时,函数的图象恒在图象的上方,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,函数.
(1)当时,解不等式;
(2)若关于的方程的解集中恰有一个元素,求的取值范围;
(3)设,若对任意,函数在区间上的最大值与最小值的差不超过1,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为研究昼夜温差大小与某疾病的患病人数之间的关系,经查询得到今年上半年每月15号的昼夜温差情况与患者的人数如表:
日期 | 1月15日 | 2月15日 | 3月15日 | 4月15日 | 5月15日 | 6月15日 |
昼夜温差 | 10 | 11 | 10 | 10 | 9 | 7 |
患者人数个 | 21 | 26 | 20 | 18 | 16 | 8 |
研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.
若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出y关于x的线性回归方程;
若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问中所得线性回归方程是否理想?
参考公式:,
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com