【题目】已知函数是定义在上的奇函数,当时,,给出下列命题:
①当时, ②函数有3个零点
③的解集为 ④,都有
其中正确命题的个数是( )
A. 4B. 3C. 2D. 1
【答案】A
【解析】
对于①:根据奇函数的性质即可求解;
对于②:先求出当时,函数的零点,利用奇函数的性质,就可以求出当时,函数的零点,由于函数是定义在上的奇函数,所以有。
对于③:分类讨论,当时,求出的解集;当时,求出的解集。
对于④:利用导数,求出函数的值域,就可以判断是否正确。
对于①:当时,有,由奇函数定义可知:,所以
本命题正确;
对于②:当时, ,解得,即,根据奇函数的性质可知,又因为定义域是,所以,因此函数有3个零点,本命题正确;
对于③:当时,,即,解得,;
当时,通过①的分析,可知,当时,即,解得,,本命题正确;
对于④:当时,,,当时,,函数单调递增;当 ,函数单调递减,
的极大值为,
当时,,根据③可知,当时,,当时,,
所以当时,,由于是奇函数时,,
而,所以当时,,即恒成立,本命题正确。
综上所述,有4个命题是正确的,因此本题选A。
科目:高中数学 来源: 题型:
【题目】再直角坐标系中,定义两点,间的“直角距离”为,现有下列命题:
①若,是轴上两点,则
②已知,,则为定值
③原点到直线上任一点的直角距离的最小值为
④设且,,若点是在过与的直线上,且点到点与的“直角距离”之和等于,那么满足条件的点只有个.
其中的真命题是____________.(写出所有真命题的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分,(1)小问5分,(2)小问7分)
如图,椭圆的左、右焦点分别为过的直线交椭圆于两点,且
(1)若,求椭圆的标准方程
(2)若求椭圆的离心率
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知a,b是异面直线,给出下列结论:
①一定存在平面,使直线平面,直线平面;
②一定存在平面,使直线平面,直线平面;
③一定存在无数个平面,使直线b与平面交于一个定点,且直线平面.
则所有正确结论的序号为( )
A.②③B.①③C.①②D.①②③
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左焦点为F,短轴的两个端点分别为A、B,且,为等边三角形.
(1)求椭圆C的方程;
(2)如图,点M在椭圆C上且位于第一象限内,它关于坐标原点O的对称点为N;过点M作x轴的垂线,垂足为H,直线与椭圆C交于另一点J,若,试求以线段为直径的圆的方程;
(3)已知是过点A的两条互相垂直的直线,直线与圆相交于两点,直线与椭圆C交于另一点R;求面积取最大值时,直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线的参数方程为(为参数,),以平面直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标系,圆的极坐标方程为.
(1)若直线被圆截得的弦长为时,求的值.
(2)直线的参数方程为(为参数),若,垂足为,求点的极坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】圆的方程为:,为圆上任意一点,过作轴的垂线,垂足为,点在上,且.
(1)求点的轨迹的方程;
(2)过点的直线与曲线交于、两点,点的坐标为,的面积为,求的最大值,及直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥中,与都为等边三角形,且侧面与底面互相垂直,为的中点,点在线段上,且,为棱上一点.
(1)试确定点的位置,使得平面;
(2)在(1)的条件下,求二面角的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com