精英家教网 > 高中数学 > 题目详情
在平面直角坐标系xOy中,O是坐标原点,设函数f(x)=k(x-2)+3的图象为直线l,且l与x轴、y轴分别交于A、B两点,给出下列四个命题:
①存在正实数m,使△AOB的面积为m的直线l仅有一条;
②存在正实数m,使△AOB的面积为m的直线l仅有两条;
③存在正实数m,使△AOB的面积为m的直线l仅有三条;
④存在正实数m,使△AOB的面积为m的直线l仅有四条.
其中所有真命题的序号是( )
A.①②③
B.③④
C.②④
D.②③④
【答案】分析:根据直线方程求出直线在两坐标轴上的截距,再构造以斜率k为自变量,S是变量k的函数,利用均值不等式求函数最小值方法,分k>0和k<0两种情况讨论存在直线的条件,再分析求解.
解答:解:∵直线y=k(x-2)+3与x轴,y轴交点的坐标分别是,A(2-,0),B(0,3-2k).
S=×|2-|×|3-2k|=×
当k>0时,S=×=×(4k+-12),
∵4k+≥2=12,当且仅当k=时取等号.
∴当S=m>0时,在k>0时,k有两值;
当k<0时,S=×=×=×[(-4k+)+12],
∵-4k+≥2=12.当且仅当k=-时取等号.
当m>12时,在k<0时,k有两值.;
∴当 m=0时,仅有一条直线使△AOB的面积为m,∴①不正确;
当0<m<12时,仅有两条直线使△AOB的面积为m,∴②正确;
当m=12时,仅有三条直线使△AOB的面积为m,∴③正确;
当m>12时,仅有四条直线使△AOB的面积为m,∴④正确.
故选D
点评:本题借助考查命题的真假判定,考查直线与坐标轴围成的△的面积问题.S的面积可根据直线在坐标轴上的截距求得.在本题中根据斜率k取值的个数来确定直线存在的条数,这是解决此类题的常用方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xoy中,已知圆心在直线y=x+4上,半径为2
2
的圆C经过坐标原点O,椭圆
x2
a2
+
y2
9
=1(a>0)
与圆C的一个交点到椭圆两焦点的距离之和为10.
(1)求圆C的方程;
(2)若F为椭圆的右焦点,点P在圆C上,且满足PF=4,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面直角坐标系xOy中,锐角α和钝角β的终边分别与单位圆交于A,B两点.若点A的横坐标是
3
5
,点B的纵坐标是
12
13
,则sin(α+β)的值是
16
65
16
65

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,若焦点在x轴的椭圆
x2
m
+
y2
3
=1
的离心率为
1
2
,则m的值为
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•泰州三模)选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,已知A(0,1),B(0,-1),C(t,0),D(
3t
,0)
,其中t≠0.设直线AC与BD的交点为P,求动点P的轨迹的参数方程(以t为参数)及普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东莞一模)在平面直角坐标系xOy中,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦点为F1(-1,0),且椭圆C的离心率e=
1
2

(1)求椭圆C的方程;
(2)设椭圆C的上下顶点分别为A1,A2,Q是椭圆C上异于A1,A2的任一点,直线QA1,QA2分别交x轴于点S,T,证明:|OS|•|OT|为定值,并求出该定值;
(3)在椭圆C上,是否存在点M(m,n),使得直线l:mx+ny=2与圆O:x2+y2=
16
7
相交于不同的两点A、B,且△OAB的面积最大?若存在,求出点M的坐标及对应的△OAB的面积;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案