精英家教网 > 高中数学 > 题目详情

【题目】已知定义域为(0,+∞)的函数f(x)满足:
①x>1时,f(x)<0;
②f( )=1;
③对任意的正实数x,y,都有f(xy)=f(x)+f(y).
(1)求证:f( )=﹣f(x);
(2)求证:f(x)在定义域内为减函数;
(3)求满足不等式f(log0.5m+3)+f(2log0.5m﹣1)≥﹣2的m集合.

【答案】
(1)证明:令 ,得f(1)=0,

,得


(2)证明:设x1>x2>0,f(x1)﹣f(x2)= =

∵x1>x2,∴ ,∴ ,即f(x1)﹣f(x2)<0,

∴f(x1)<f(x)2

∴f(x)在(0,+∞)上为减函数


(3)解:∵ ,∴

f(log0.5m+3)+f(2log0.5m﹣1)≥﹣2,f(log0.5m+3)+f(2log0.5m﹣1)≥f(4),即f[(log0.5m+3)(2log0.5m﹣1)]≥f(4),

∵f(x)定义域上是减函数(log0.5m+3)(2log0.5m﹣1)≤4,

不等式的解集


【解析】(1)令 ,可求得f(1)=0,再令 ,代入f(xy)=f(x)+f(y),即可证得:f( )=﹣f(x);(2)设x1>x2>0,作差整理可得f(x1)﹣f(x2)= ,依题意,可得 ,利用单调减函数的定义可证f(x)在(0,+∞)上为减函数;(3)依题意,不等式f(log0.5m+3)+f(2log0.5m﹣1)≥﹣2可化为f[(log0.5m+3)(2log0.5m﹣1)]≥f(4),再利用(2)f(x)在(0,+∞)上为减函数可得不等式组 ,解之即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数,若对于在定义域内存在实数满足,则称函数为“局部奇函数”.若函数是定义在上的“局部奇函数”,则实数的取值范围是(  )

A. [1﹣,1+ B. [﹣1,2] C. [﹣2,2] D. [﹣2,1﹣]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取50个作为样本,称出它们的重量(单位:克),重量分组区间为[515](1525](2535](3545],由此得到样本的重量频率分布直方图(如图).

1)求的值;

2)从盒子中随机抽取3个小球,其中重量在[5,15]内的小球个数为X,求X的分布列和数学期望. (以直方图中的频率作为概率).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x﹣alnx+
(1)若a=1,求f(x)在x∈[1,3]的最值;
(2)求函数f(x)的单调区间;
(3)若存在x0∈[1,e],使得f(x0)<0成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= +a是奇函数
(1)求常数a的值
(2)判断f(x)的单调性并给出证明
(3)求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】记等差数列的前项和为.

(1)求证:数列是等差数列;

(2)若 ,对任意,均有是公差为的等差数列,求使为整数的正整数的取值集合;

(3)记,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟订的价格进行试销得到如下数据:

单价x(元)

8

8.2

8.4

8.6

8.8

9

销量y(件)

92

82

83

80

75

68


(1)求出y关于x的线性回归方程 .其中 =250
(2)预计在今后的销售中,销量与单价仍然服从(I)中的关系,且该产品的成本是4元每件,为使工厂获得最大利润,该产品的单价应定为多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=f(x)满足f(x﹣1)=2x+3a,且f(a)=7.
(1)求函数f(x)的解析式;
(2)若g(x)=xf(x)+λf(x)+x在[0,2]上最大值为2,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f (x)= 的定义域集合是A,函数g(x)=lg[x2﹣(2a+1)x+a2+a]的定义域集合是B.
(1)求集合A,B.
(2)若A∪B=B,求实数a的取值范围.

查看答案和解析>>

同步练习册答案