精英家教网 > 高中数学 > 题目详情
已知{an}是首项为1的等差数列,Sn是{an}的前n项和,且S5=a13,则数列{
1
anan+1
}
的前5项和为(  )
A.
10
11
B.
5
11
C.
4
5
D.
2
5
设等差数列{an}的公差为d,
∵S5=a13
5×1+
5×4
2
d=1+12d

解得d=2.
∴an=a1+(n-1)d=1+2(n-1)=2n-1.
1
anan+1
=
1
(2n-1)(2n+1)
=
1
2
(
1
2n-1
-
1
2n+1
)

∴数列{
1
anan+1
}
的前n项和Tn=
1
2
[(1-
1
3
)+(
1
3
-
1
5
)+
+…+(
1
2n-1
-
1
2n+1
)]
=
1
2
(1-
1
2n+1
)=
n
2n+1

∴T5=
5
2×5+1
=
5
11

故选B.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数,数列的前项和为,点均在函数的图象上.
(1)求数列的通项公式
(2)令,证明:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设Sn等比数列{an}的前n项和,且a2=
1
9
S2=
4
9

(1)求数列{an}的通项;
(2)设bn=
n
an
,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

数列1
1
2
,3
1
4
,5
1
8
,7
1
16
,…
,前n项和为(  )
A.n2-
1
2n
+1
B.n2-
1
2n+1
+
1
2
C.n2-n-
1
2n
+1
D.n2-n-
1
2n+1
+
1
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在等差数列{an}中,a3+a4+a5=84,a9=73.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)对任意m∈N*,将数列{an}中落入区间(9m,92m)内的项的个数记为bm,求数列{bm}的前m项和Sm

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)满足f(x+1)=3f(x)+2,若a1=1,an=f(n).
(1)设Cn=an+1,证明:{Cn}是等比数列;
(2)设Sn是数列{an}的前n项和,求Sn

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列{an}满足:a1=1,an-an-1+2anan-1=0,(n∈N*,n>1)
(Ⅰ)求证数列{
1
an
}
是等差数列并求{an}的通项公式;
(Ⅱ)设bn=anan+1,求证:b1+b2+…+bn
1
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

数列{an}是递增的等差数列,且a1+a6=-6,a3•a4=8.
(1)求数列{an}的通项公式;
(2)求数列{an}的前n项和Sn的最小值;
(3)求数列{|an|}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

观察下列数的特点,1,1,2,3,5,8,x,21,34,55,…中,其中x是( )
A.12B.13C.14D.15

查看答案和解析>>

同步练习册答案