分析 (1)通过xn+1=$\sqrt{\frac{3{{x}_{n}}^{2}}{{{x}_{n}}^{2}+3}}$可知${{x}_{n+1}}^{2}$=$\frac{3{{x}_{n}}^{2}}{{{x}_{n}}^{2}+3}$,对等式两边同时取倒数可知$\frac{1}{{{x}_{n+1}}^{2}}$=$\frac{1}{3}$+$\frac{1}{{{x}_{n}}^{2}}$,进而数列{$\frac{1}{{x}_{n}^{2}}$}是公差为$\frac{1}{3}$的等差数列;
(2)通过(1)可知数列{$\frac{1}{{x}_{n}^{2}}$}的公差为$\frac{1}{3}$,通过x1=$\frac{1}{25}$可知首项$\frac{1}{{{x}_{2014}}^{2}}$=1296,进而计算可得结论.
解答 (1)证明:依题意,xn+1=$\sqrt{\frac{3{{x}_{n}}^{2}}{{{x}_{n}}^{2}+3}}$,
∴${{x}_{n+1}}^{2}$=$\frac{3{{x}_{n}}^{2}}{{{x}_{n}}^{2}+3}$,
∴$\frac{1}{{{x}_{n+1}}^{2}}$=$\frac{{{x}_{n}}^{2}+3}{3{{x}_{n}}^{2}}$=$\frac{1}{3}$+$\frac{1}{{{x}_{n}}^{2}}$,
∴数列{$\frac{1}{{x}_{n}^{2}}$}是公差为$\frac{1}{3}$的等差数列;
(2)由(1)可知数列{$\frac{1}{{x}_{n}^{2}}$}的公差为$\frac{1}{3}$,
又∵x1=$\frac{1}{25}$时,
∴$\frac{1}{{{x}_{1}}^{2}}$=625,
∴$\frac{1}{{{x}_{n}}^{2}}$=625+$\frac{1}{3}$(n-1)=625+$\frac{n-1}{3}$,
∴$\frac{1}{{{x}_{2014}}^{2}}$=625+$\frac{2014-1}{3}$=625+671=1296,
∴x2014=$\frac{1}{\sqrt{1296}}$=$\frac{1}{36}$.
点评 本题考查数列的通项,注意解题方法的积累,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | “a>1”是“$\frac{1}{a}$<1”的充分必要条件 | |
B. | 命题“若x2<1,则-1<x<1”的逆否命题是“若x≥1或x≤-1,则x2≥1” | |
C. | 设x,y∈R,则“x≥2且y≥2”是“x2+y2≥4”的必要而不充分条件 | |
D. | 已知p:a≠0,q:ab≠0,则p是q的充分不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 分别表示空间向量的有向线段所在直线是异面直线,则这两个向量不是共面向量 | |
B. | 若$|{\overrightarrow a}|=|{\overrightarrow b}|$,则$\overrightarrow a,\overrightarrow b$的长度相等而方向相同或相反 | |
C. | 若向量$\overrightarrow{AB},\overrightarrow{CD}$满足$|{\overrightarrow{AB}}|>|{\overrightarrow{CD}}|$,且$\overrightarrow{AB}与\overrightarrow{CD}$同向,则$\overrightarrow{AB}>\overrightarrow{CD}$ | |
D. | 若两个非零向量$\overrightarrow{AB},\overrightarrow{CD}$满足$\overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow 0$,则$\overrightarrow{AB}$∥$\overrightarrow{CD}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 若|$\overrightarrow{a}$|=|$\overrightarrow{b}$|,则$\overrightarrow{a}$=$\overrightarrow{b}$ | |
B. | 若A,B,C,D是不共线的四点,则$\overrightarrow{AB}$=$\overrightarrow{DC}$是四边形ABCD是平行四边形的等价条件 | |
C. | 若非零向量$\overrightarrow{AB}$∥$\overrightarrow{CD}$,那么AB∥CD | |
D. | $\overrightarrow{AB}$=$\overrightarrow{CD}$的等价条件是A与C重合,B与D重合 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com