精英家教网 > 高中数学 > 题目详情

【题目】ABC的内角ABC的对边分别为abc,已知2a2bcosC+csinB

(Ⅰ)求tanB

(Ⅱ)若CABC的面积为6,求BC

【答案】(Ⅰ)tanB2;(Ⅱ)

【解析】

I)利用正弦定理化简已知条件,求得的值.

II)由的值求得的值,从而求得的值,利用正弦定理以及三角形的面积公式列方程,由此求得也即的值.

(Ⅰ)∵2a2bcosC+csinB,利用正弦定理可得:2sinA2sinBcosC+sinCsinB,又sinAsinB+C)=sinBcosC+cosBsinC

化为:2cosBsinB≠0,∴tanB2

(Ⅱ)∵tanB2B∈(0π),可得sinBcosB

sinAsinB+C)=sinBcosC+cosBsinC

,可得:a.又absin6,可得b

a,即,解得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若实数满足的取值范围为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校艺术学院2019级表演专业有27人,播音主持专业9人,影视编导专业18.某电视台综艺节目招募观众志愿者,现采用分层抽样的方法从上述三个专业的人员中选取6人作为志愿者.

1)分别写出各专业选出的志愿者人数;

2)将6名志愿者平均分成三组,且每组的两名同学选自不同的专业,通过适当的方式列出所有可能的结果,并求表演专业的志愿者与播音主持专业的志愿者分在一组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】请从下面三个条件中任选一个,补充在下面的横线上,并作答.

ABBC,②FC与平面ABCD所成的角为,③∠ABC

如图,在四棱锥PABCD中,底面ABCD是菱形,PA⊥平面ABCD,且PAAB2,,PD的中点为F

1)在线段AB上是否存在一点G,使得AF平面PCG?若存在,指出GAB上的位置并给以证明;若不存在,请说明理由;

2)若_______,求二面角FACD的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆与轴相切于点,过点分别作动圆异于轴的两切线,设两切线相交于,点的轨迹为曲线.

1)求曲线的轨迹方程;

2)过的直线与曲线相交于不同两点,若曲线上存在点,使得成立,求实数的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线的极坐标方程为,直线的参数方程为为参数).

(Ⅰ)求曲线的参数方程与直线的普通方程;

(Ⅱ)设点为曲线上的动点,点和点为直线上的点,且.面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合,元素成为集合的特征元素,对于中的元素,定义:.时,若a是集合中的非特征元素,则的概率为___.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是边长为的等边三角形,EF分别为ABAC的中点,,沿EF折起,使点A翻折到点P的位置,连接PBPC,则四棱锥的外接球的表面积的最小值为________,此时四棱锥的体积为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为,左右顶点分别为,上顶点为

1)求椭圆离心率;

2)点到直线的距离为,求椭圆方程;

3)在(2)的条件下,点在椭圆上且异于两点,直线与直线交于点,说明运动时以为直径的圆与直线的位置关系,并证明.

查看答案和解析>>

同步练习册答案