精英家教网 > 高中数学 > 题目详情
正方体ABCD-A1B1C1D1棱长为2,E是棱A1B1的中点.
(1)求异面直线A1B1与BD的距离;
(2)求直线EC1与BD所成角的大小.
(1)∵B1B⊥AB,B1B⊥BC,
∴B1B⊥平面ABCD
∴B1B⊥BD
又B1B⊥A1B1
∴线段B1B的长即为所求.
∵B1B=2,
∴异面直线A1B1与BD的距离为2.
(2)取A1D1中点H
∴EHB1D1
∴EHBD
∴EC1与BD所成角为∠HEC1(或其补角)
设正方体棱长为2,则HE=
2
,EC1=
5
,HC1=
5

∴cos∠HEC1=
HE2+EC12-HC12
2HE×EC1
=
2+5-5
2
×
5
=
10
10
>0
∴EC1与BD所成角为arccos
10
10
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

一条直线和一个平面所成的角为,则此直线和平面内不经过斜足的所有直线所成的角中最大的角是____________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在正方体ABCD-A1B1C1D1中,O为底面ABCD的中心,E为C1C的中点,则异面直线D1A与EO所成角的余弦值为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,已知PA⊥平面ABCD,PB与平面ABC成60°的角,底面ABCD是直角梯形,∠ABC=∠BAD=90°,AB=BC=
1
2
AD.
(1)求证:平面PCD⊥平面PAC;
(2)设E是棱PD上一点,且PE=
1
3
PD,求异面直线AE与PB所成的角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

异面直线所成角θ的范围是(  )
A.0°<θ<90°B.0°<θ<180°C.0°<θ≤90°D.0°≤θ<90°

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知正三棱柱ABC-A1B1C1的底面边长为8,侧棱长为6,D为AC中点.
(1)求证:AB1平面C1DB;
(2)求异面直线AB1与BC1所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过正方体ABCD-A1B1C1D1的顶点A作直线L,使L与棱AB,AD,AA1所成的角都相等,这样的直线L可以作(  )
A.1条B.2条C.3条D.4条

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知长方体ABCD-A1B1C1D1中,A1A=AB,E、F分别是BD1和AD中点.
(1)求异面直线CD1、EF所成的角;
(2)证明EF是异面直线AD和BD1的公垂线.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图在长方体ABCD-A1B1C1D1中,AB=a,AD=b,AC1=c,点M为AB的中点,点N为BC的中点.
(1)求长方体ABCD-A1B1C1D1的体积;
(2)若a=4,b=2,c=
21
,求异面直线A1M与B1N所成的角.

查看答案和解析>>

同步练习册答案