【题目】已知函数,若
(1)求的值,并写出函数的最小正周期(不需证明);
(2)是否存在正整数,使得函数在区间内恰有个零点?若存在,求出的值;若不存在,请说明理由.
科目:高中数学 来源: 题型:
【题目】下列关于回归分析的说法中错误的是( )
A.回归直线一定过样本中心( )
B.残差图中残差点比较均匀地落在水平的带状区域中,说明选用的模型比较合适
C.两个模型中残差平方和越小的模型拟合的效果越好
D.甲、乙两个模型的R2分别约为0.98和0.80,则模型乙的拟合效果更好
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知点, , 在圆上.
(1)求圆的方程;
(2)过点的直线交圆于, 两点.
①若弦长,求直线的方程;
②分别过点, 作圆的切线,交于点,判断点在何种图形上运动,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司为了研究年宣传费(单位:千元)对销售量(单位:吨)和年利润(单位:千元)的影响,搜集了近 8 年的年宣传费和年销售量数据:
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
38 | 40 | 44 | 46 | 48 | 50 | 52 | 56 | |
45 | 55 | 61 | 63 | 65 | 66 | 67 | 68 |
(Ⅰ)请补齐表格中 8 组数据的散点图,并判断与中哪一个更适宜作为年销售量关于年宣传费的函数表达式?(给出判断即可,不必说明理由)
(Ⅱ)若(Ⅰ)中的,且产品的年利润与, 的关系为,为使年利润值最大,投入的年宣传费 x 应为何值?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知直三棱柱ABC﹣A1B1C1中,∠ACB=90°,E是棱CC1上的动点,F是AB的中点,AC=BC=2,AA1=4.
(1)当E是棱CC1的中点时,求证:CF∥平面AEB1;
(2)在棱CC1上是否存在点E,使得二面角A﹣EB1﹣B的大小是45°?若存在,求出CE的长,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆 的两顶点为A,B如图,离心率为 ,过其焦点F(0,1)的直线l与椭圆交于C,D两点,并与x轴交于点P,直线AC与直线BD交于点Q.
(Ⅰ)当 时,求直线l的方程;
(Ⅱ)当点P异于A,B两点时,求证: 为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥A﹣BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC= .
(Ⅰ)证明:AC⊥平面BCDE;
(Ⅱ)求直线AE与平面ABC所成的角的正切值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com