精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,如果都是整数,就称点为整点,下列命题中正确的是_____________(写出所有正确命题的编号)

①存在这样的直线,既不与坐标轴平行又不经过任何整点

②如果都是无理数,则直线不经过任何整点

③直线经过无穷多个整点,当且仅当经过两个不同的整点

④直线经过无穷多个整点的充分必要条件是:都是有理数

⑤存在恰经过一个整点的直线

【答案】①③⑤

【解析】

给直线分别取不同的方程,可得到②和④的反例,同时找到符合条件①和⑤的直线;通过过原点的直线经过两个不同的整点可证得其经过无穷多个整点,③正确.

①令直线为:,则其不与坐标轴平行且不经过任何整点,①正确;

②令直线为:,则直线经过整点,②错误;

③令直线为:,过两个不同的整点

,两式作差得:

即直线经过整点

直线经过无穷多个整点,③正确;

④令直线为:,则不过整点,④错误;

⑤令直线为:,则其只经过一个整点,⑤正确.

本题正确结果:①③⑤

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设抛物线的焦点为准线为.已知以为圆心半径为4的圆与交于两点是该圆与抛物线的一个交点.

(1)求的值

(2)已知点的纵坐标为且在上异于点的另两点且满足直线和直线的斜率之和为试问直线是否经过一定点若是求出定点的坐标否则请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知若椭圆)交轴于两点,点是椭圆上异于的任意一点,直线分别交轴于点,则为定值.

1)若将双曲线与椭圆类比,试写出类比得到的命题;

2)判定(1)类比得到命题的真假,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义在R上的奇函数

(1)求实数的值

(2)如果对任意,不等式恒成立,求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校实行自主招生,参加自主招生的学生从8个试题中随机挑选出4个进行作答,至少答对3个才能通过初试已知甲、乙两人参加初试,在这8个试题中甲能答对6个,乙能答对每个试题的概率为,且甲、乙两人是否答对每个试题互不影响.

1)试通过概率计算,分析甲、乙两人谁通过自主招生初试的可能性更大;

2)若答对一题得5分,答错或不答得0分,记乙答题的得分为,求的分布列及数学期望和方差.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设曲线y=xn+1(n∈N*)在点(1,1)处的切线与x轴的交点的横坐标为xn,令an=lgxna1+a2+…+a99的值为(  )

A. 1 B. 2 C. -2 D. -1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法中正确的个数为______.

1.是一个区间,若对任意,当时,都有,则上单调递增;

2.函数在定义域上是单调递减函数;

3.函数在定义域上是单调递增函数;

4.集合相等.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小王投资1万元2万元、3万元获得的收益分别是4万元、9万元、16万元为了预测投资资金x(万元)与收益y万元)之间的关系,小王选择了甲模型和乙模型.

1)根据小王选择的甲、乙两个模型,求实数a,b,c,p,q,r的值

2)若小王投资4万元,获得收益是25.2万元,请问选择哪个模型较好?

查看答案和解析>>

同步练习册答案