精英家教网 > 高中数学 > 题目详情
已知二次函数的二次项系数为,且不等式的解集为(1,3).
⑴若方程有两个相等实数根,求的解析式.
⑵若的最大值为正数,求实数的取值范围.
(1),(2)

试题分析:(1)求二次函数解析式,一般用待定系数法,如何设二次函数解析式是解题关键.本题设零点式比较到位. ∵二次函数的二次项系数为,且不等式解集为(1,3),∴可设,且,由方程,∵方程有两个相等的实根,∴,而,∴从而,(2)由
解得.
解:⑴∵二次函数的二次项系数为,且不等式解集为(1,3),
∴可设,且                  2分
 
由方程,           4分
∵方程有两个相等的实根,∴,而
从而                       6分
⑵由      8分
解得            11分
∴实数的取值范围是.              12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知底角为60°的等腰梯形ABCD,底边BC长为7cm,腰长为4cm,当一条垂直于底边BC(垂足为F)的直线l从左至右移动(与梯形ABCD有公共点)时,直线l把梯形分成两部分,令BF=x,试写出直线l左边部分的面积y与x的函数关系式.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,长为20m的铁丝网,一边靠墙,围成三个大小相等、紧紧相连的长方形,那么长方形长、宽、各为多少时,三个长方形的面积和最大?

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在平面直角坐标系xOy中,设定点A(a,a),P是函数(x>0)图像上一动点,若点P,A之间的最短距离为,则满足条件的实数a所有值为_________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数f(x)=,其中a∈R.若对任意的非零实数x1,存在唯一的非零实数x2(x2≠x1),使得f(x2)=f(x1)成立,则实数k的取值范围是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若不等式对任意的恒成立,则实数的取值范围是      

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知a,b,c∈R,函数f(x)=ax2+bx+c.若f(0)=f(4)>f(1),则(  )
A.a>0,4a+b=0B.a<0,4a+b=0
C.a>0,2a+b=0D.a<0,2a+b=0

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

为坐标原点,给定一个定点,而点正半轴上移动,表示的长,则中两边长的比值的最大值为     

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数,若,则实数(   )
A.
B.
C.2
D.9

查看答案和解析>>

同步练习册答案