精英家教网 > 高中数学 > 题目详情
(2013•淄博二模)已知函数f(x)在实数集R上具有下列性质:
①直线x=1是函数f(x)的一条对称轴;
②f(x+2)=-f(x);
③当1≤x1<x2≤3时,(f(x2)-f(x1))•(x2-x1)<0,
则f(2011)、f(2012)、f(2013)从大到小的顺序为
f(2013),f(2012),f(2011)
f(2013),f(2012),f(2011)
分析:由①得f(-x+1)=f(x+1);由②可求得f(x)的周期;由③可判断f(x)在[1,3]上的单调性.运用函数周期性及f(-x+1)=f(x+1)可把f(2011)、f(2012)、
f(2013)转化到区间[1,3]上处理,再利用单调性即可作出比较.
解答:解:由②f(x+2)=-f(x)可得f(x+4)=-f(x+2)=-[-f(x)]=f(x),所以f(x)为以4为周期的函数.
由③知:f(x)在[1,3]上为减函数,由①得,f(-x+1)=f(x+1),
所以f(2011)=f(4×502+3)=f(3),f(2012)=f(4×503)=f(0)=f(-1+1)=f(1+1)=f(2),f(2013)=f(4×503+1)=f(1),
因为f(x)在[1,3]上为减函数,所以f(1)>f(2)>f(3),即f(2013)>f(2012)>f(2011),
故答案为 f(2013),f(2012),f(2011).
点评:本题考查函数的奇偶性、单调性、周期性及其应用,准确理解相关定义及其变形是解决本题的基础,解决本题的基本思路利用性质把问题转化到区间[1,3]上解决,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•淄博二模)在如图所示的几何体中,△ABC是边长为2的正三角形,AE=1,AE⊥平面ABC,平面BCD⊥平面ABC,BD=CD,且BD⊥CD.
(Ⅰ)AE∥平面BCD;
(Ⅱ)平面BDE⊥平面CDE.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•淄博二模)已知P(x,y)为函数y=1+lnx图象上一点,O为坐标原点,记直线OP的斜率k=f(x).
(Ⅰ)若函数f(x)在区间(m,m+
1
3
)
(m>0)上存在极值,求实数m的取值范围;
(Ⅱ)当 x≥1时,不等式f(x)≥
t
x+1
恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•淄博二模)如图,平行四边形ABCD中,AB=2,AD=1,∠A=60°,点M在AB边上,且AM=
1
3
AB,则
DM
DB
•等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•淄博二模)等比数列{cn}满足cn+1+cn=10•4n-1(n∈N*),数列{an}的前n项和为Sn,且an=log2cn
(I)求an,Sn
(II)数列{bn}满足bn=
14Sn-1
Tn为数列{bn}
的前n项和,是否存在正整数m,k(1<m<k),使得T1,Tm,Tk成等比数列?若存在,求出所有m,k的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•淄博二模)集合A={-1,0,1},B={y|y=ex,x∈A},则A∩B=(  )

查看答案和解析>>

同步练习册答案