精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥PABCD中,底面ABCD为平行四边形,∠DAB=45°,PD⊥平面ABCDAPBD.

1)证明:BC⊥平面PDB

2)若ABPB与平面APD所成角为45°,求点B到平面APC的距离.

【答案】1)证明见解析;(2.

【解析】

1)通过证明平面证得,即有,结合,证得平面.

2)利用等体积法,由列方程,解方程求得点到平面的距离.

1)证明:∵PD⊥平面ABCDBC在平面ABCD内,BD在平面ABCD内,

PDBCPDBD

APBDAPPD=P,且APPD均在平面APD内,

BD⊥平面APD

AD在平面APD内,

BDAD

又底面ABCD为平行四边形,

BCBD

PDBD=D,且都在平面PBD内,

BC⊥平面PDB

2)由(1)知,PB与平面APD所成角即为∠BPD,故∠BPD=45°,

AB,∠DAB=45°,

AP2+PC2=AC2,即APCP

VPABC=VBPAC

,即,解得

即点B到平面APC的距离为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某种植物感染病毒极易导致死亡,某生物研究所为此推出了一种抗病毒的制剂,现对株感染了病毒的该植株样本进行喷雾试验测试药效.测试结果分植株死亡植株存活两个结果进行统计;并对植株吸收制剂的量(单位:)进行统计规定:植株吸收在(包括)以上为足量,否则为不足量”.现对该株植株样本进行统计,其中植株存活株,对制剂吸收量统计得下表.已知植株存活制剂吸收不足量的植株共.

编号

吸收量

1)完成以下列联表,并判断是否可以在犯错误概率不超过的前提下,认为植株的存活制剂吸收足量有关?

吸收足量

吸收不足量

合计

植株存活

植株死亡

合计

2)若在该样本制剂吸收不足量的植株中随机抽取株,求这株中恰有植株存活的概率.

参考数据:

,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有甲乙丙丁四个人相互之间传球,从甲开始传球,甲等可能地把球传给乙丙丁中的任何一个人,依此类推.

1)通过三次传球后,球经过乙的次数为ξ,求ξ的分布列和期望;

2)设经过n次传球后,球落在甲手上的概率为an

i)求a1,a2,an

ii)探究:随着传球的次数足够多,球落在甲乙丙丁每个人手上的概率是否相等,并简单说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,且 ,则数列中的为(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数上是减函数,求实数的取值范围;

(2)若函数上存在两个极值点,且,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】科技引领,布局未来科技研发是企业发展的驱动力量.2007~2018年,某企业连续12年累计研发投入达4100亿元,我们将研发投入与经营投入的比值记为研发投入占营收比,这12年间的研发投入(单位:十亿元)用图中的条形图表示,研发投入占营收比用图中的折线图表示.根据折线图和条形图,下列结论正确的有(

A.2012年至2013年研发投入占营收比增量相比2017年至2018年研发投入占营收比增量大

B.2013年至2014年研发投入增量相比2015年至2016年研发投入增量小

C.该企业连续12年来研发投入逐年增加

D.该企业连续12年来研发投入占营收比逐年增加

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,圆O是一半径为10米的圆形草坪,为了满足周边市民跳广场舞的需要,现规划在草坪上建一个广场,广场形状如图中虚线部分所示的曲边四边形,其中AB两点在⊙O上,ABCD恰是一个正方形的四个顶点.根据规划要求,在ABCD四点处安装四盏照明设备,从圆心O点出发,在地下铺设4条到ABCD四点线路OAOBOCOD.

1)若正方形边长为10米,求广场的面积;

2)求铺设的4条线路OAOBOCOD总长度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,是等边三角形, 边上的动点(含端点),记,.

(1)求的最大值;

(2)若,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知下列命题:

①函数上单调递减,在上单调递增;

②若函数上有两个零点,则的取值范围是

③函数上单调递减;

④当时,函数的最大值为.

上述命题正确的是__________(填序号).

查看答案和解析>>

同步练习册答案