精英家教网 > 高中数学 > 题目详情

设两圆C1C2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C1C2|=(  )

A.4                B.4            C.8                D.8

 

【答案】

C

【解析】

试题分析:设圆的方程分别为,将点(4,1)代入可知,两式分别解得

,那么两圆心的距离为|C1C2|=,故选C

考点:本试题考查了圆与圆的位置关系的运用。

点评:设出圆的方程,利用过公共点(4,1),且都与坐标轴相切说明了都在第一象限,求出圆心的坐标即可得到结论。属于中档题。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设两圆C1、C2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C1C2|=(  )
A、4
B、4
2
C、8
D、8
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设两圆C1、C2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C1C2|=
8
8

查看答案和解析>>

科目:高中数学 来源:2011年安徽省巢湖春晖学校高二上学期期中考试理科数学 题型:选择题

设两圆C1、C2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C1C2|=(  )

A.4            B.4       C.8             D.8

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省东莞市麻涌中学高一(下)第二次月考数学试卷(理科)(解析版) 题型:选择题

设两圆C1、C2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C1C2|=( )
A.4
B.
C.8
D.

查看答案和解析>>

同步练习册答案