精英家教网 > 高中数学 > 题目详情
4.直线方程2x+3+1=0化成斜截式为y=-$\frac{2}{3}$x-$\frac{1}{3}$;化成截距式为$\frac{x}{-\frac{1}{2}}$+$\frac{y}{-\frac{1}{3}}$=1.

分析 根据直线方程的几种形式,写出斜截式与截距式方程即可.

解答 解:直线方程2x+3y+1=0化成斜截式为y=-$\frac{2}{3}$x-$\frac{1}{3}$;
化成截距式为$\frac{x}{-\frac{1}{2}}$+$\frac{y}{-\frac{1}{3}}$=1.
故答案为:y=-$\frac{2}{3}$x-$\frac{1}{3}$,$\frac{x}{-\frac{1}{2}}$+$\frac{y}{-\frac{1}{3}}$=1.

点评 本题考查了直线方程的几种形式的互相转化问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知椭圆的中心在原点,焦点在坐标轴上,它的长轴长为短轴长的3倍,且此椭圆经过点A(3,1),求这个椭圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=ln(1+x)-ln(1-x).
(1)判断函数f(x)的奇偶性;
(2)解关于x的方程f(x)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.正方体ABCD-A1B1C1D1中,E是棱D1D的中点,P,Q分别为线段B1D1,BD上的点,且3$\overrightarrow{{B}_{1}P}$=$\overrightarrow{P{D}_{1}}$,若PQ⊥AE,$\overrightarrow{BD}$=λ$\overrightarrow{DQ}$,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知:
(1)$\overrightarrow{OA}$=(3,4),$\overrightarrow{OB}$=(7,12),$\overrightarrow{OC}$=(9,16).求证:A,B,C三点共线;
(2)设$\overrightarrow{OA}$=(k,12),$\overrightarrow{OB}$=(4,5),$\overrightarrow{OC}$=(10,k),若点A,B,C能构成三角形,求实数k所满足的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.中央电视台公开课《开讲啦》需要现场观众,现邀请甲、乙、丙、丁四所大学的40名学生参加,各大学邀请的学生数如下表所示:
大学
人数812812
从这40名学生中按分层抽样的方式抽取10名学生安排在第一排发言席就座.
(1)从抽取的10名学生中随机选出3名学生发言,求这3名学生中任意2名均不属于同一大学的概率;
(2)从抽取的10名学生中随机选出3名学生发言,设其中来自乙大学的学生人数为ξ,求随机变量ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\left\{\begin{array}{l}{-2x,(-3≤x<2)}\\{{2}^{x-1},(2<x≤3)}\end{array}\right.$,
(1)求函数f(x)的定义域和值域;
(2)作出函数f(x)的图象,并指出其单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求经过P(0,0)、Q(0,1)、R(2,0)三点的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.不等式2x-3y-5≥0表示的平面区域是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案