精英家教网 > 高中数学 > 题目详情

【题目】已知函数

1)若函数在区间上的最小值为,求实数的取值范围;

2)是否存在整数,使得关于的不等式的解集恰好为,若存在,求出的值,若不存在,请说明理由.

【答案】(1)(2)存在整数,使得关于的不等式的解集恰好为

【解析】

1)先求出二次函数的对称轴方程,再讨论对称轴与定区间的位置关系①当时,②当时,③时,求函数的最小值,然后运算即可得解;

2)假设存在整数,使得关于的不等式的解集恰好为,即的解集为,再结合二次方程的根的关系求解即可.

解:(1)函数的对称轴为

①当,即时,,不满足

②当,即时,符合题意.

,即时,.

综上:实数的取值范围:.

2)假设存在整数,使得关于的不等式的解集恰好为,即的解集为.可得.

的两个实数根为.即可得出..

,当时,不存在,舍去,

时,.

故存在整数,且,使得关于的不等式的解集恰好为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列说法中错误的是__________(填序号)

①命题“”的否定是

已知 的最小值为

,命题“若,则”的否命题是真命题;

④已知 ,若命题为真命题,则的取值范围是.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,某市为响应国家号召,大力推行全民健身运动,加强对市内各公共体育运动设施的维护,几年来,经统计,运动设施的使用年限x(年)和所支出的维护费用y(万元)的相关数据如图所示,根据以往资料显示y对x呈线性相关关系。

(1)求出y关于x的回归直线方程少

(2)试根据(1)中求出的回归方程,预测使用年限至少为几年时,维护费用将超过100万元?

参考公式:对于一组数据(x1,yl),(x2,y2),…,(xn,Yn),其回归方程的斜率和截距的最小二乘估计分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论的单调性;

(2)若存在实数,使得,求正实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设抛物线的焦点为,过点作垂直于轴的直线与抛物线交于两点,且以线段为直径的圆过点.

(1)求抛物线的方程;

(2)若直线与抛物线交于两点,点为曲线:上的动点,求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)判断的奇偶性并证明;

2)判断的单调性并说明理由;

3)若对任意恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,四边形为正方形,,且中点.

(1)证明://平面

(2)证明:平面平面

(3)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

1)当时,试比较的大小关系;

2)猜想的大小关系,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段.下表为10名学生的预赛成绩,其中有三个数据模糊.

学生序号

1

2

3

4

5

6

7

8

9

10

立定跳远(单位:米)

1.96

1.92

1.82

1.80

1.78

1.76

1.74

1.72

1.68

1.60

30秒跳绳(单位:次)

63

a

75

60

63

72

70

a1

b

65

在这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,则

A2号学生进入30秒跳绳决赛

B5号学生进入30秒跳绳决赛

C8号学生进入30秒跳绳决赛

D9号学生进入30秒跳绳决赛

查看答案和解析>>

同步练习册答案