【题目】下面有五个命题:
①函数y=sin4x﹣cos4x的最小正周期是π;
② =tanα;
③函数y=sinx+cosx的图象均关于点( ,0)成中心对称;
④把函数y=3sin(2x+ )的图象向右平移 个单位得到y=3sin2x的图象.
其中正确命题的编号是 . (写出所有正确命题的编号)
【答案】①④
【解析】解:①函数y=sin4x﹣cos4x=sin2x﹣cos2x=﹣cos2x,则函数的最小正周期是T= =π,故①正确;
② =﹣tanα,故②错误;③函数y=sinx+cosx= sin(x+ ),由x+ =kπ,得x=kπ﹣ ,k∈Z,则函数的图象均关于点( ,0)不成中心对称,故③错误;
④把函数y=3sin(2x+ )的图象向右平移 个单位得到y=3sin[2(x﹣ )+ ]=3sin2x,故④正确,所以答案是:①④
【考点精析】根据题目的已知条件,利用命题的真假判断与应用的相关知识可以得到问题的答案,需要掌握两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系.
科目:高中数学 来源: 题型:
【题目】(本小题满分14分)
如图,2015年春节,摄影爱好者在某公园处,发现正前方处有一立柱,测得立柱顶端的仰角和立柱底部的俯角均为,已知的身高约为米(将眼睛距地面的距离按米处理)
(1)求摄影者到立柱的水平距离和立柱的高度;
(2)立柱的顶端有一长2米的彩杆绕中点在与立柱所在的平面内旋转.摄影者有一视角范围为的镜头,在彩杆转动的任意时刻,摄影者是否都可以将彩杆全部摄入画面?说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数y=asinx﹣bcosx的一条对称轴为x= ,则直线l:ax﹣by+c=0的倾斜角为( )
A.45°
B.60°
C.120°
D.135°
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分10分)一位网民在网上光顾某淘宝小店,经过一番浏览后,对该店铺中的五种商品有购买意向.已知该网民购买两种商品的概率均为,购买两种商品的概率均为,购买种商品的概率为.假设该网民是否购买这五种商品相互独立.
(1)求该网民至少购买4种商品的概率;
(2)用随机变量表示该网民购买商品的种数,求的概率分布和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分16分)已知为实数,函数,函数.
(1)当时,令,求函数的极值;
(2)当时,令,是否存在实数,使得对于函数定义域中的任意实数,均存在实数,有成立,若存在,求出实数的取值集合;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A、B、C的对边分别为a,b,c,且满足(2a﹣c)cosB=bcosC
(1)求角B的大小;
(2)若b= ,a+c=4,求△ABC的面积S.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分16分)
在平面直角坐标系中,已知椭圆: 的离心率,直线过椭圆的右焦点,且交椭圆于, 两点.
(1)求椭圆的标准方程;
(2)已知点,连结,过点作垂直于轴的直线,设直线与直线交于点,试探索当变化时,是否存在一条定直线,使得点恒在直线上?若存在,请求出直线的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线C1的参数方程为: (α为参数),以原点为极点,x轴的正半轴为极轴,并取与直角坐标系相同的长度单位,建立极坐标系,曲线C2的极坐标方程为:ρ=cosθ. (Ⅰ)求曲线C2的直角坐标方程;
(Ⅱ)若P,Q分别是曲线C1和C2上的任意一点,求|PQ|的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com