精英家教网 > 高中数学 > 题目详情

【题目】已知动圆在圆外部且与圆相切,同时还在圆内部与圆相切.

1)求动圆圆心的轨迹方程;

2)记(1)中求出的轨迹为轴的两个交点分别为上异于的动点,又直线轴交于点,直线分别交直线两点,求证:为定值.

【答案】(1);(2)详见解析.

【解析】

(1)由直线与圆相切,则,则点的轨迹是以为焦点的椭圆,即可求得椭圆方程;

(2)方法一:设,分别求得直线的方程,直线的方程,分别求得点的坐标,则,即可求得为定值;
方法二:设直线的斜率为,直线的斜率为,联立直线的方程与直线的方程,求出点坐标,将点坐标代入椭圆方程,即可求得为定值.

(1)设动圆的半径为,由已知得

点的轨迹是以为焦点的椭圆,

设椭圆方程:),则,则

方程为:

(2)解法一:设 ,由已知得 ,则

直线的方程为:

直线的方程为:

时,

满足

为定值.

解法二:由已知得,设直线的斜率为,直线的斜率为,由已知得,存在且不为零,

直线的方程为:

直线的方程为:

时,

,

联立直线和直线的方程,可得点坐标为

点坐标代入椭圆方程中,得

整理得

为定值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn,满足Sn=2an-1nN*),数列{bn}满足nbn+1-n+1bn=nn+1)(nN*),且b1=1

1)证明数列{}为等差数列,并求数列{an}{bn}的通项公式;

2)若cn=-1n-1,求数列{cn}的前n项和T2n

3)若dn=an,数列{dn}的前n项和为Dn,对任意的nN*,都有DnnSn-a,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是双曲线的右支上一点,分别为双曲线的左右焦点,的内切圆的圆心横坐标为( )

A. B. 2C. D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其导函数的最大值为.

(1)求实数的值;

(2)若,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了迎接2019年全国文明城市评比,某市文明办对市民进行了一次文明创建知识的网络问卷调查.每一位市民有且仅有一次参加机会,通过随机抽样,得到参加问卷调查的1000人的得分(满分:100分)数据,统计结果如下表所示:

组别

频数

25

150

200

250

225

100

50

(1)由频数分布表可以认为,此次问卷调查的得分服从正态分布近似为这1000人得分的平均值(同一组数据用该组区间的中点值作为代表),请利用正态分布的知识求

(2)在(1)的条件下,文明办为此次参加问卷调查的市民制定如下奖励方案:

(i)得分不低于的可以获赠2次随机话费,得分低于的可以获赠1次随机话费;

(ii)每次获赠的随机话费和对应的概率为:

获赠的随机话费(单位:元)

20

40

概率

现市民小王要参加此次问卷调查,记(单位:元)为该市民参加问卷调查获赠的话费,求的分布列及数学期望.

附:①

②若,则.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点是抛物线上一点,的焦点.

(1)若上的两点,证明:依次成等比数列.

(2)过作两条互相垂直的直线与的另一个交点分别交于(的上方),求向量轴正方向上的投影的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂销售部以箱为单位销售某种零件,每箱的定价为元,低于箱按原价销售,不低于箱则有以下两种优惠方案:①以箱为基准,每多箱送箱;②通过双方议价,买方能以优惠成交的概率为,以优惠成交的概率为.

甲、乙两单位都要在该厂购买箱这种零件,两单位都选择方案②,且各自达成的成交价格相互独立,求甲单位优惠比例不低于乙单位优惠比例的概率;

某单位需要这种零件箱,以购买总价的数学期望为决策依据,试问该单位选择哪种优惠方案更划算?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知离心率为2的双曲线的一个焦点到一条渐近线的距离为.

(1)求双曲线的方程;

(2)设分别为的左右顶点,异于一点,直线分别交轴于两点,求证:以线段为直径的圆经过两个定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,MBC顶点的坐标为A(-12)B(1,4)C(32).

(1)ΔABC外接圆E的方程;

(2)若直线经过点(04),且与圆E相交所得的弦长为,求直线的方程;

(3)在圆E上是否存在点P,满足,若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案