精英家教网 > 高中数学 > 题目详情
在△ABC中,sinA=2cosBsinC,则三角形为(  )
分析:由三角函数的诱导公式和两角和的正弦公式,化简可得sin(B-C)=0,结合B、C为三角形的内角得到B=C,从而得出b=c,可得三角形是等腰三角形.
解答:解:∵△ABC中,B+C=π-A
∴sinA=sin(π-A)=sin(B+C)=sinBcosC+cosBsinC,
又∵sinA=2cosBsinC,
∴sinBcosC+cosBsinC=2cosBsinC,可得sinBcosC-cosBsinC=0
即sin(B-C)=0
∵B、C是三角形的内角,可得B-C∈(-π,π)
∴B-C=0,得B=C,
因此三角形ABC中b=c,可得三角形是等腰三角形
故选:C
点评:本题给出三角形的角的关系式,判断三角形的形状,着重考查了诱导公式、两角和与差的正弦公式和三角形的形状判断等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

4、在△ABC中,sin(A+B)=sin(A-B),则△ABC一定是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,①sin(A+B)+sinC;②cos(B+C)+cosA;③tan
A+B
2
tan
C
2
;④cos
B+C
2
sin
A
2
,其中恒为定值的是(  )
A、②③B、①②C、②④D、③④

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,sin(A-B)+sinC=
3
2
,BC=
3
AC
,则∠B=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•广东模拟)在△ABC中,sin(C-A)=1,sinB=
1
3

(Ⅰ)求sinA的值;
(Ⅱ)设AC=
6
,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,“sin(A-B)cosB+cos(A-B)sinB≥1”是“△ABC是直角三角形”的(  )
A、充分不必要条件B、必要不充分条件C、充分必要条件D、既不充分也不必要条件

查看答案和解析>>

同步练习册答案