精英家教网 > 高中数学 > 题目详情
(2010•上饶二模)设函数f(x)=|-x2+2bx+c|,x∈[-1,1]的最大值为m.若m≥k对任意的b、c恒成立,则k的最大值是(  )
分析:函数f(x)=|-x2+2bx+c|,x∈[-1,1]的最大值为f(-1),f(1),f(b)三个中最大的一个值,然后根据b、c任意,然后取b=0,c=
1
4
与b=0,c=
1
2
进行判定,假设f(b)=|b2+c|=m,f(-1)≤m,f(1)≤m,从而求出m的范围,即可求出所求.
解答:解:函数f(x)=|-x2+2bx+c|,x∈[-1,1]的最大值为f(-1),f(1),f(b)三个中最大的一个值
而f(-1)=|c-2b-1|,f(1)=|c+2b-1|,f(b)=|b2+c|
∵m≥k对任意的b、c恒成立,
∴当b=0,c=
1
4
时也成立即f(x)=|-x2+
1
4
|,x∈[-1,1]的最大值为
3
4

故可排除选项A
当b=0,c=
1
2
时也成立即f(x)=|-x2+
1
2
|,x∈[-1,1]的最大值为
1
2

假设f(b)=|b2+c|=m,则c=m-b2或c=-m-b2
f(-1)=|c-2b-1|≤m,f(1)=|c+2b-1|≤m,
∴(b+1)2≤2m,(b-1)2≤2m,将两式相加得:2b2+2≤4m
即m≥
1
2
,而m≥k,k的最大值是
1
2

故选B.
点评:本题主要考查了函数恒成立问题,以及二次函数的性质和排除法的运用,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•上饶二模)设函数f(x)=
x2+bx+c,(x≥0)
2,(x<0)
,若f(4)=f(0),f(2)=-2.则函数F(x)=f(|x|)-|x|的零点个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•上饶二模)已知x,y满足
x-y+6≥0
x+y≥0
x≤3
,若z=ax+y
的最大值为3a+9,最小值为3a-3.则a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•上饶二模)已知椭圆
x2
4
+y2=1
的下顶点为A,点B是椭圆上的任意的一点,点C、D是直线x-y-4=0上的两点(C在D的下方),则
AB
CD
|
CD
|
的最大值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•上饶二模)二项式(2
x
-
1
3x
)6展开式中的x-2
次项的系数是
1
1

查看答案和解析>>

同步练习册答案