精英家教网 > 高中数学 > 题目详情

【题目】如图1,已知菱形的对角线交于点,点为线段的中点,,将三角形沿线段折起到的位置,,如图2所示.

(Ⅰ)证明:平面 平面

(Ⅱ)求三棱锥的体积.

【答案】(Ⅰ)见证明;(Ⅱ)

【解析】

(Ⅰ)折叠前,ACDE;,从而折叠后,DEPFDECF,由此能证明DE⊥平面PCF

再由DCAEDCAE能得到DCEBDCEB.说明四边形DEBC为平行四边形.可得CBDE.由此能证明平面PBC⊥平面PCF

(Ⅱ)由题意根据勾股定理运算得到,又由(Ⅰ)的结论得到 ,可得平面,再利用等体积转化有,计算结果.

(Ⅰ)折叠前,因为四边形为菱形,所以

所以折叠后,, 又平面

所以平面

因为四边形为菱形,所以

又点为线段的中点,所以

所以四边形为平行四边形.

所以

平面,所以平面

因为平面,所以平面平面

(Ⅱ)图1中,由已知得

所以图2中,,又

所以,所以

平面,所以

平面

所以平面

所以

所以三棱锥的体积为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】从某市统考的学生数学考试卷中随机抽查100份数学试卷作为样本,分别统计出这些试卷总分,由总分得到如下的频率分别直方图.

(1)求这100份数学试卷成绩的中位数;

(2)从总分在的试卷中随机抽取2份试卷,求抽取的2份试卷中至少有一份总分少于65分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,为了测量某一隧道两侧AB两地间的距离,某同学首先选定了不在直线AB上的一点C中∠A、∠B、∠C所对的边分别为abc),然后确定测量方案并测出相关数据,进行计算.现给出如下四种测量方案;①测量∠A,∠Cb;②测量∠A,∠B,∠C;③测量abC;④测量∠ABa,则一定能确定AB间距离的所有方案的序号为(

A.①③B.①③④C.②③④D.①②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合是集合的所有子集组成的集合.若集合满足对任意的映射,总存在,使得成立,其中,表示集合的子集的补集,为给定的正整数.试求所有满足上述条件的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】半期考试后,班长小王统计了50名同学的数学成绩,绘制频率分布直方图如图所示.

根据频率分布直方图,估计这50名同学的数学平均成绩;

用分层抽样的方法从成绩低于115的同学中抽取6名,再在抽取的这6名同学中任选2名,求这两名同学数学成绩均在中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数图象经过的定点坐标;

(2)时,求曲线在点处的切线方程及函数单调区间;

(3)若对任意恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某儿童乐园在六一儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为xy.奖励规则如下:

,则奖励玩具一个;

,则奖励水杯一个;

其余情况奖励饮料一瓶.

假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项活动.

)求小亮获得玩具的概率;

)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族中的成员仅以自驾或公交方式通勤.分析显示:当)的成员自驾时,自驾群体的人均通勤时间为(单位:分钟),而公交群体的人均通勤时间不受影响,恒为分钟,试根据上述分析结果回答下列问题:

(1)当在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?

(2)求该地上班族的人均通勤时间的表达式;讨论的单调性,并说明其实际意义.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4,极坐标与参数方程

已知在平面直角坐标系中,为坐标原点,曲线为参数),在以平面直角坐标系的原点为极点,轴的正半轴为极轴,取相同单位长度的极坐标系中,直线的极坐标方程为

(1)求曲线的普通方程和直线的直角坐标方程;

(2)直线轴的交点,经过点的直线与曲线交于两点,若,求直线的倾斜角.

查看答案和解析>>

同步练习册答案