【题目】如图1,已知菱形的对角线交于点,点为线段的中点,,,将三角形沿线段折起到的位置,,如图2所示.
(Ⅰ)证明:平面 平面;
(Ⅱ)求三棱锥的体积.
【答案】(Ⅰ)见证明;(Ⅱ)
【解析】
(Ⅰ)折叠前,AC⊥DE;,从而折叠后,DE⊥PF,DE⊥CF,由此能证明DE⊥平面PCF.
再由DC∥AE,DC=AE能得到DC∥EB,DC=EB.说明四边形DEBC为平行四边形.可得CB∥DE.由此能证明平面PBC⊥平面PCF.
(Ⅱ)由题意根据勾股定理运算得到,又由(Ⅰ)的结论得到 ,可得平面,再利用等体积转化有,计算结果.
(Ⅰ)折叠前,因为四边形为菱形,所以;
所以折叠后,,, 又,平面,
所以平面
因为四边形为菱形,所以.
又点为线段的中点,所以.
所以四边形为平行四边形.
所以.
又平面,所以平面.
因为平面,所以平面平面.
(Ⅱ)图1中,由已知得,,
所以图2中,,又
所以,所以
又平面,所以
又,平面,
所以平面,
所以.
所以三棱锥的体积为.
科目:高中数学 来源: 题型:
【题目】从某市统考的学生数学考试卷中随机抽查100份数学试卷作为样本,分别统计出这些试卷总分,由总分得到如下的频率分别直方图.
(1)求这100份数学试卷成绩的中位数;
(2)从总分在和的试卷中随机抽取2份试卷,求抽取的2份试卷中至少有一份总分少于65分的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,为了测量某一隧道两侧A、B两地间的距离,某同学首先选定了不在直线AB上的一点C(中∠A、∠B、∠C所对的边分别为a、b、c),然后确定测量方案并测出相关数据,进行计算.现给出如下四种测量方案;①测量∠A,∠C,b;②测量∠A,∠B,∠C;③测量a,b,∠C;④测量∠A,∠B,a,则一定能确定A、B间距离的所有方案的序号为( )
A.①③B.①③④C.②③④D.①②④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设集合, 是集合的所有子集组成的集合.若集合满足对任意的映射,总存在,使得成立,其中,表示集合的子集的补集,为给定的正整数.试求所有满足上述条件的集合.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】半期考试后,班长小王统计了50名同学的数学成绩,绘制频率分布直方图如图所示.
根据频率分布直方图,估计这50名同学的数学平均成绩;
用分层抽样的方法从成绩低于115的同学中抽取6名,再在抽取的这6名同学中任选2名,求这两名同学数学成绩均在中的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某儿童乐园在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为x,y.奖励规则如下:
①若,则奖励玩具一个;
②若,则奖励水杯一个;
③其余情况奖励饮料一瓶.
假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项活动.
(Ⅰ)求小亮获得玩具的概率;
(Ⅱ)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族中的成员仅以自驾或公交方式通勤.分析显示:当中()的成员自驾时,自驾群体的人均通勤时间为(单位:分钟),而公交群体的人均通勤时间不受影响,恒为分钟,试根据上述分析结果回答下列问题:
(1)当在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?
(2)求该地上班族的人均通勤时间的表达式;讨论的单调性,并说明其实际意义.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4,极坐标与参数方程
已知在平面直角坐标系中,为坐标原点,曲线(为参数),在以平面直角坐标系的原点为极点,轴的正半轴为极轴,取相同单位长度的极坐标系中,直线的极坐标方程为.
(1)求曲线的普通方程和直线的直角坐标方程;
(2)直线与轴的交点,经过点的直线与曲线交于两点,若,求直线的倾斜角.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com