精英家教网 > 高中数学 > 题目详情

【题目】,其中e为自然对数的底数(.

1)当时,求处的切线方程;

2)设,求的单调区间;

3)当时,恒成立,求a的取值范围.

【答案】1;(2)答案见解析;(3.

【解析】

1)当时,先求函数的导数,利用导数的几何意义求切线方程;

2)先求函数的导数,然后分讨论求函数的单调性;(3)首先求函数的导数,讨论当,由函数的单调性判断函数的最大值说明恒成立,当时,令,则,分两种情况讨论函数的单调性,并判断函数的最值,说明的取值范围.

解:(1)当时,

所以处的切线方程为,即.

2.

①当时,,所以当时,;当时,

②当时,令.

.,即时,则恒成立,

所以单调增区间为.

.,即时,

所以单调增区间为,单调减区间为.

.,即时,,所以单调增区间为,单调减区间为.

3.

①若时,则时恒成立,所以上单调递减,所以当时,,所以时,恒成立.

②若时,令,则

.时,即时,,所以单调递减,所以,即

所以单调递减,所以当时,恒成立.

.时,令,则,当时,单调递减;当时,单调递增.

因为上单调递增且

所以,所以在,所以,所以单调递增,

所以当时,,不满足条件.

所以a的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】小赵和小王约定在早上之间到某公交站搭乘公交车去上学,已知在这段时间内,共有班公交车到达该站,到站的时间分别为,如果他们约定见车就搭乘,则小赵和小王恰好能搭乘同一班公交车去上学的概率为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,四点中恰有三个点在椭圆C上,左、右焦点分别为F1F2

1)求椭圆C的方程;

2)过左焦点F1且不平行坐标轴的直线l交椭圆于PQ两点,若PQ的中点为NO为原点,直线ON交直线x=﹣3于点M,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12)已知圆,圆,动圆与圆外切并且与圆内切,圆心的轨迹为曲线

(Ⅰ)求的方程;

(Ⅱ)是与圆,圆都相切的一条直线,与曲线交于两点,当圆的半径最长时,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知曲线的参数方程为为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.曲线的极坐标方程为,曲线与曲线的交线为直线

1)求直线和曲线的直角坐标方程;

2)直线轴交于点,与曲线相交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱台ABCDEF中,平面ACFD⊥平面ABC,∠ACB=ACD=45°DC =2BC

I)证明:EFDB

II)求DF与面DBC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知O为原点,抛物线的准线与y轴的交点为HP为抛物线C上横坐标为4的点,已知点P到准线的距离为5.

1)求C的方程;

2)过C的焦点F作直线l与抛物线C交于AB两点,若以AH为直径的圆过B,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面ABCD为直角梯形,AB//CD是以为斜边的等腰直角三角形,且平面平面ABCD,点F满足,.

1)试探究为何值时,CE//平面BDF,并给予证明;

2)在(1)的条件下,求直线AB与平面BDF所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为菱形,且.

(1)证明:平面平面

(2)有一动点在底面的四条边上移动,求三棱锥的体积的最大值.

查看答案和解析>>

同步练习册答案