精英家教网 > 高中数学 > 题目详情

(本题满分14分) 如图(1)在等腰中,D,E,F分别是AB,AC和BC边的中点,,现将沿CD翻折成直二面角A-DC-B.(如图(2))

        

(I)试判断直线AB与平面DEF的位置关系,并说明理由;

(II)求二面角E-DF-C的余弦值;

(III)在线段BC是否存在一点P,但APDE?证明你的结论.

 

【答案】

解:(Ⅲ)在线段BC上不存在点P,使AP⊥DE,………………………  9分

证明如下:在图2中, 作AG⊥DE,交DE于G交CD于Q由已知得

∠AED=120°,于是点G在DE的延长线上,从而Q在DC的延长线

上,过Q作PQ⊥CD交BC于P∴PQ⊥平面ACD ∴PQ⊥DE  

∴DE⊥平面APQ∴AP⊥DE.但P在BC的延长线上。………………… 12分

【法二】(Ⅱ)以点D为坐标原点,直线DB、DC为x轴、y轴,建立空间直角坐标系,

设CD=a,则AC=BC=2a , AD=DB=则A(0,0,),B(,0,0), C(0,.………………………  5分

取平面CDF的法向量为设平面EDF的法向量为

 得,…………6分

,……………………………………… 7分

所以二面角E—DF—C的余弦值为;…………………………… 8分

【解】(Ⅲ)设

, ………………………………………  9分

 ………………………11分

,可知点P在BC的延长线上

                      所以在线段BC上不存在点P使AP⊥DE. ……………………………………………… 12分

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本题满分14分
A.选修4-4:极坐标与参数方程在极坐标系中,直线l 的极坐标方程为θ=
π
3
(ρ∈R ),以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,曲线C的参数方程为
x=2cosα
y=1+cos2α
(α 参数).求直线l 和曲线C的交点P的直角坐标.
B.选修4-5:不等式选讲
设实数x,y,z 满足x+y+2z=6,求x2+y2+z2 的最小值,并求此时x,y,z 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分14分)如图,四边形ABCD为矩形,AD⊥平面ABEAEEBBC=2,上的点,且BF⊥平面ACE

(1)求证:AEBE;(2)求三棱锥DAEC的体积;(3)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江苏省高三上学期期中考试数学 题型:解答题

(本题满分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}

(Ⅰ)若AB=[0,3],求实数m的值

(Ⅱ)若ACRB,求实数m的取值范围

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年福建省高三上学期第三次月考理科数学卷 题型:解答题

(本题满分14分)

已知点是⊙上的任意一点,过垂直轴于,动点满足

(1)求动点的轨迹方程; 

(2)已知点,在动点的轨迹上是否存在两个不重合的两点,使 (O是坐标原点),若存在,求出直线的方程,若不存在,请说明理由。

 

查看答案和解析>>

科目:高中数学 来源:2014届江西省高一第二学期入学考试数学 题型:解答题

(本题满分14分)已知函数.

(1)求函数的定义域;

(2)判断的奇偶性;

(3)方程是否有根?如果有根,请求出一个长度为的区间,使

;如果没有,请说明理由?(注:区间的长度为).

 

查看答案和解析>>

同步练习册答案