精英家教网 > 高中数学 > 题目详情
5.已知幂函数f(x)=x9-3m(m∈N*)的图象关于原点对称,且在R上函数值随x的增大而增大.
(1)求f(x)表达式;
(2)求满足f(a+1)+f(3a-4)<0的a的取值范围.

分析 (1)根据函数的单调性求出m的范围,从而求出m的值;
(2)根据函数的奇偶性得到f(a+1)<f(4-3a),根据函数在R上递增,得到a+1<4-3a,求出a的范围即可.

解答 解 (1)∵函数在(0,+∞)上递增,
∴9-3m>0,解得m<3,…(2分)
又m∈N*
∴m=1,2.…(3分)
又函数图象关于原点对称,
∴3m-9为奇数,故m=2.…(5分)
∴f(x)=x3…(6分)
(2)∵f(a+1)+f(3a-4)<0,
∴f(a+1)<-f(3a-4)…(7分)
又f(x)为奇函数,
∴f(a+1)<f(4-3a)…(9分)
又函数在R上递增,
∴a+1<4-3a…(11分)
∴$a<\frac{3}{4}$.…(12分)

点评 本题考查了幂函数的性质,考查函数的单调性、奇偶性问题,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.若集合{1,$\frac{b}{a}$,a}={0,a+b,a2},则a2+b2=(  )
A.-1B.1C.0D.±1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某医药研究所开发一种新药,据监测,如果成人按规定的剂量服用,服用药后每毫升中的含药量y(微克)与服药的时间t(小时)之间近似满足如图所示的曲线,其中OA是线段,曲线AB是函数y=kat(t≥1,a>0,且k,a是常数)的图象.
(1)写出服药后y关于t的函数关系;
(2)据测定,每毫升血液中的含药量不少于2微克时治疗疾病有效.假设某人第一次服药为早上6:00,为保持疗效,第二次服药最迟应当在当天几点钟?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设条件p:2x2-3x+1≤0;条件q:(x-a)[x-(a+1)]≤0.若¬p是¬q的必要不充分条件,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.现有100ml的蒸馏水,假定里面有一个细菌,现从中抽取20ml的蒸馏水,则抽到细菌的概率为$\frac{1}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=log2$\frac{1-x}{1+x}$
(1)判断f(x)的奇偶性并证明;
(2)若f(3m+1)<f(m),求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图(1)所示,在直角梯形ABCP中,BC∥AP,AB⊥BC,CD⊥AP,AD=DC=PD=2,E、F、G分别为线段PC、PD、BC的中点,现将△PDC折起,使平面PDC⊥平面ABCD(图(2)).
(1)求证:AP∥平面EFG;
(2)若点Q是线段PB的中点,求证:PC⊥平面ADQ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在三棱柱ABC-A1B1C1中,已知AB⊥侧面BB1C1C,CB⊥C1B,BC=1,CC1=2,A1B1=$\sqrt{2}$,
(1)试在棱CC1(不包含端点C,C1)上确定一点E的位置,使得EA⊥EB1
(2)在(Ⅰ)的条件下,求AE和BC1所成角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知△ABC中,a、b、c分别是角A、B、C的对边,有b2+c2=a2+bc
(1)求角A的大小;
(2)求$f(x)=sin(x-A)+\sqrt{3}cosx$的最大值.

查看答案和解析>>

同步练习册答案