ÉèÊýÁÐ{an}ÊÇÊ×ÏîΪ4£¬¹«²îΪ1µÄµÈ²îÊýÁУ¬SnΪÊýÁÐ{bn}µÄÇ°nÏîºÍ£¬ÇÒSn=n2+2n£®
£¨1£©ÇóÊýÁÐ{an}¼°{bn}µÄͨÏʽanºÍbn£»
£¨2£©f(n)=
n+3£¬nΪÕýÆæÊý
2n+1£¬nΪÕýżÊý
ÎÊÊÇ·ñ´æÔÚk¡ÊN*ʹf£¨k+27£©=4f£¨k£©³ÉÁ¢£®Èô´æÔÚ£¬Çó³ökµÄÖµ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£»
£¨3£©¶ÔÈÎÒâµÄÕýÕûÊýn£¬²»µÈʽ
a
(1+
1
b1
)(1+
1
b2
)¡­(1+
1
bn
)
-
1
n-1+an+1
¡Ü0
ºã³ÉÁ¢£¬ÇóÕýÊýaµÄÈ¡Öµ·¶Î§£®
·ÖÎö£º£¨1£©Ö±½ÓÀûÓõȲîÊýÁÐͨÏʽ´úÈëÊýÖµ¼´¿ÉÇó³öÊýÁÐ{an}µÄͨÏʽ£¬¸ù¾ÝSnÓëanµÄ¹ÌÓйØϵan=
s1n=1
sn-sn-1n¡Ý2
Çó{bn}µÄͨÏʽ
£¨2£©Îª½«f£¨k+27£©=4f£¨k£©»¯¼ò£¬Ó¦·ÖkÊÇÕýÆæÊý¡¢ÕýżÊýÁ½ÖÖÇé¿ö·ÖÀ໯¼ò£®ÔÙÅжϽâµÄÇé¿ö£®
£¨3£©½«²»µÈʽ±äÐβ¢°Ñan+1=n+4´úÈëµÃa¡Ü
1
2n+3
(1+
1
b1
)(1+
1
b2
)(1+
1
b3
)¡­(1+
1
bn
£©£®Éèg£¨n£©=
1
2n+3
(1+
1
b1
)(1+
1
b2
)¡­(1+
1
bn
£©Ö»ÐèaСÓÚ»òµÈÓÚg£¨n£©µÄ×îСֵ¼´¿É£®¿¼Âǵ½g£¨n£©½âÎöʽÎÞ·¨½øÒ»²½»¯¼òÕûÀí£¬¹Ê¿ÉÒÔͨ¹ý×÷ÉÌ·¨Ñо¿Æäµ¥µ÷ÐÔ£¬Çó³ö×îСֵ£¬µÃ³öÕýÊýaµÄÈ¡Öµ·¶Î§£®
½â´ð£º½â£º£¨1£©an=a1+£¨n-1£©d=4+n-1=n+3£®
µ±n=1ʱ£¬b1=S1=3£®
µ±n¡Ý2ʱ£¬bn=Sn-Sn-1=n2+2n-£¨n-1£©2-2£¨n-1£©=2n+1£®
µ±n=1ʱÉÏʽҲ³ÉÁ¢£¬
¡àbn=2n+1£¨n¡ÊN*£©£®
ËùÒÔan=n+3£¬bn=2n+1£®
£¨2£©¼ÙÉè·ûºÏÌõ¼þµÄk£¨k¡ÊN*£©´æÔÚ£¬
ÓÉÓÚf£¨n£©=
n+3£¬nΪÕýÆæÊý
2n+1£¬nΪÕýżÊý
¡àµ±kΪÕýÆæÊýʱ£¬k+27ΪÕýżÊý
ÓÉf£¨k+27£©=4f£¨k£©£¬µÃ2£¨k+27£©+1=4£¨k+3£©£®¡à2k=43£¬k=
43
2
£®£¨Éᣩ
µ±kΪÕýżÊýʱ£¬k+27ΪÕýÆæÊý£¬
ÓÉf£¨k+27£©=4f£¨k£©£¬µÃ£¨k+27£©+3=4£¨2k+1£©£®¼´7k=26£¬¡àk=
26
7
£®£¨Éᣩ
Òò´Ë£¬·ûºÏÌõ¼þµÄÕýÕûÊýk²»´æÔÚ
£¨3£©½«²»µÈʽ±äÐβ¢°Ñan+1=n+4´úÈëµÃa¡Ü
1
2n+3
(1+
1
b1
)(1+
1
b2
)(1+
1
b3
)¡­(1+
1
bn
£©£®
Éèg£¨n£©=
1
2n+3
(1+
1
b1
)(1+
1
b2
)¡­(1+
1
bn
£©£®¡à
g(n+1)
g(n)
=
2n+3
2n+5
(1+
1
bn+1
)=
2n+3
2n+5
¡Á
2n+4
2n+3
=
2n+4
2n+5
2n+3
£®
ÓÖ¡ß
(2n+5)(2n+3)
£¼
(2n+5)+(2n+3)
2
=2n+4£¬¡à
g(n+1)
g(n)
£¾1£¬¼´g£¨n+1£©£¾g£¨n£©£®¡àg£¨n£©ËænµÄÔö´ó¶øÔö´ó£¬¹Êg£¨n£©min=g£¨1£©=
1
5
(1+
1
3
)=
4
5
15
£®¡à0£¼a¡Ü
4
5
15
£®
µãÆÀ£º±¾Ì⿼²éµÈ±ÈÊýÁС¢µÈ²îÊýÁÐͨÏʽÇó½â£¬·Ö¶Îº¯Êý֪ʶ¡¢ÊýÁеĺ¯ÊýÐÔÖÊ¡¢²»µÈʽºã³ÉÁ¢ÎÊÌ⣮¿¼²é·ÖÀàÌÖÂÛ¡¢·ÖÀà²ÎÊýµÄ˼ÏëÓë·½·¨£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèÊýÁÐ{an}ÊÇÊ×ÏîΪ1¹«±ÈΪ3µÄµÈ±ÈÊýÁУ¬°Ñ{an}ÖеÄÿһÏ¼õÈ¥2ºó£¬µÃµ½Ò»¸öÐÂÊýÁÐ{bn}£¬{bn}µÄÇ°nÏîºÍΪSn£¬¶ÔÈÎÒâµÄn¡ÊN*£¬ÏÂÁнáÂÛÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A¡¢bn+1=3bn£¬ÇÒSn=
1
2
£¨3n-1£©
B¡¢bn+1=3bn-2£¬ÇÒSn=
1
2
£¨3n-1£©
C¡¢bn+1=3bn+4£¬ÇÒSn=
1
2
£¨3n-1£©-2n
D¡¢bn+1=3bn-4£¬ÇÒSn=
1
2
£¨3n-1£©-2n

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèÊýÁÐ{an}ÊÇÊ×ÏîΪ0µÄµÝÔöÊýÁУ¬fn(x)=|sin
1
n
(x-an)|£¬x¡Ê[an£¬an+1](n¡ÊN*)
£¬Âú×㣺¶ÔÓÚÈÎÒâµÄb¡Ê[0£¬1£©£¬fn£¨x£©=b×ÜÓÐÁ½¸ö²»Í¬µÄ¸ù£¬Ôò{an}µÄͨÏʽΪ
an=
n(n-1)
2
¦Ð
an=
n(n-1)
2
¦Ð
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèÊýÁÐ{an}ÊÇÊ×ÏîΪ1£¬¹«²îΪ2µÄµÈ²îÊýÁУ¬¶Ôÿһ¸ök¡ÊN*£¬ÔÚakÓëak+1Ö®¼ä²åÈë2k-1¸ö2£¬µÃµ½ÐÂÊýÁÐ{bn}£¬ÉèAn¡¢Bn·Ö±ðÊÇÊýÁÐ{an}ºÍ{bn}µÄÇ°nÏîºÍ£®
£¨1£©a10ÊÇÊýÁÐ{bn}µÄµÚ¼¸Ï
£¨2£©ÊÇ·ñ´æÔÚÕýÕûÊým£¬Ê¹Bm=2010£¿Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»·ñÔò£¬Çó³ömµÄÖµ£»
£¨3£©ÉèamÊÇÊýÁÐ{bn}µÄµÚf£¨m£©ÏÊԱȽϣºBf£¨m£©Óë2AmµÄ´óС£¬ÇëÏêϸÂÛÖ¤ÄãµÄ½áÂÛ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèÊýÁÐ{an}ÊÇÊ×ÏîΪ50£¬¹«²îΪ2µÄµÈ²îÊýÁУ»{bn}ÊÇÊ×ÏîΪ10£¬¹«²îΪ4µÄµÈ²îÊýÁУ¬ÒÔak¡¢bkΪÏàÁÚÁ½±ßµÄ¾ØÐÎÄÚ×î´óÔ²Ãæ»ý¼ÇΪSk£¬Èôk¡Ü21£¬ÄÇôSkµÈÓÚ
£¨2k+3£©2¦Ð
£¨2k+3£©2¦Ð
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•¹ã¶«£©ÉèÊýÁÐ{an}ÊÇÊ×ÏîΪ1£¬¹«±ÈΪ-2µÄµÈ±ÈÊýÁУ¬Ôòa1+|a2|+a3+|a4|=
15
15
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸