精英家教网 > 高中数学 > 题目详情

(本小题满分12分)
已知函数在点的切线方程为.
(Ⅰ)求函数的解析式;
(Ⅱ)设,求证:上恒成立.

(1) . (2)见解析。

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题12分)
已知函有极值,且曲线处的切线斜率为3.
(1)求函数的解析式;
(2)求在[-4,1]上的最大值和最小值。
(3)函数有三个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数 
(1)若关于x的不等式有实数解,求实数m的取值范围;
(2)设,若关于x的方程至少有一个解,求 的最小值.
(3)证明不等式: 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求的单调区间;
(2)设,若对任意,均存在,使得,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知函数 (为实常数).
(Ⅰ)当时,求函数的单调区间;
(Ⅱ)若函数在区间上无极值,求的取值范围;
(Ⅲ)已知,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分) 设的极小值为,其导函数的图像开口向下且经过点.
(Ⅰ)求的解析式;(Ⅱ)方程有唯一实数解,求的取值范围.
(Ⅲ)若对都有恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的单调区间与极值点;
(2)若,方程有三个不同的根,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题12分)
已知函数
(1)求函数的单调区间和极值;
(2)已知的图象与函数的图象关于直线对称,证明:当时,;
(3)如果,证明: 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
①求函数的单调区间。
②若函数的图象在点(2,)处的切线的倾斜角为,对任意的,函数在区间上总不是单调函数,求m取值范围
③求证:

查看答案和解析>>

同步练习册答案