【题目】已知函数f(x)= cos(2x﹣ ).
(1)若sinθ=﹣ ,θ∈( ,2π),求f(θ+ )的值;
(2)若x∈[ , ],求函数f(x)的单调减区间.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=cos2x+2 sinxcosx﹣sin2x.
(1)求f(x)的最小正周期和值域;
(2)在△ABC中,角A,B,C所对的边分别是a,b,c,若 且a2=bc,试判断△ABC的形状.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2x3+bx2+cx,其导函数y=f′(x)的图象(如图所示)经过点(1,0),(2,0). (Ⅰ)求f(x)的解析式;
(Ⅱ)若方程f(x)﹣m=0恰有2个根,求m的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,设Ox、Oy是平面内相交成45°角的两条数轴, 、 分别是x轴、y轴正方向同向的单位向量,若向量 =x +y ,则把有序数对(x,y)叫做向量 在坐标系xOy中的坐标,在此坐标系下,假设 =(﹣2,2 ), =(2,0), =(5,﹣3 ),则下列命题不正确的是( )
A. =(1,0)
B.| |=2
C. ∥
D. ⊥
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若a∈R,则“关于x的方程x2+ax+1=0无实根”是“z=(2a﹣1)+(a﹣1)i(其中i表示虚数单位)在复平面上对应的点位于第四象限”的( )
A.充分非必要条件
B.必要非充分条件
C.充要条件
D.既非充分又非必要条件
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面是菱形, , 平面, , , , 是中点.
(I)求证:直线平面.
(II)求证:直线平面.
(III)在上是否存在一点,使得二面角的大小为,若存在,确定的位置,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若将函数y=cos 2x的图象向左平移 个单位长度,则平移后图象的对称轴为( )
A.x= ﹣ (k∈Z)
B.x= + (k∈Z)
C.x= ﹣ (k∈Z)
D.x= + (k∈Z)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在矩形ABCD中,以A为圆心,AD为半径的圆交AC,AB于M,E.CE的延长线交⊙A于F,CM=2,AB=4.
(1)求⊙A的半径;
(2)求CE的长和△AFC的面积
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com