精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)= cos(2x﹣ ).
(1)若sinθ=﹣ ,θ∈( ,2π),求f(θ+ )的值;
(2)若x∈[ ],求函数f(x)的单调减区间.

【答案】
(1)解:函数f(x)= cos(2x﹣ ),

∴f(θ+ )= cos[2(θ+ )﹣ ]

= cos(2θ+

= (cos2θcos ﹣sin2θsin

=cos2θ﹣sin2θ;


(2)解:由 ,(k∈Z)

得: ,(k∈Z);

又∵

所以函数f(x)的单调减区间为:


【解析】(I)利用三角恒等变换化简函数f(θ+ ),根据同角的三角函数关系,求值即可;(II)由正弦函数的图象与性质,求出f(x)在 上的单调减区间.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=cos2x+2 sinxcosx﹣sin2x.
(1)求f(x)的最小正周期和值域;
(2)在△ABC中,角A,B,C所对的边分别是a,b,c,若 且a2=bc,试判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2x3+bx2+cx,其导函数y=f′(x)的图象(如图所示)经过点(1,0),(2,0). (Ⅰ)求f(x)的解析式;
(Ⅱ)若方程f(x)﹣m=0恰有2个根,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,设Ox、Oy是平面内相交成45°角的两条数轴, 分别是x轴、y轴正方向同向的单位向量,若向量 =x +y ,则把有序数对(x,y)叫做向量 在坐标系xOy中的坐标,在此坐标系下,假设 =(﹣2,2 ), =(2,0), =(5,﹣3 ),则下列命题不正确的是(
A. =(1,0)
B.| |=2
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若a∈R,则“关于x的方程x2+ax+1=0无实根”是“z=(2a﹣1)+(a﹣1)i(其中i表示虚数单位)在复平面上对应的点位于第四象限”的(
A.充分非必要条件
B.必要非充分条件
C.充要条件
D.既非充分又非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是菱形, 平面 中点.

I)求证:直线平面

II)求证:直线平面

III)在上是否存在一点,使得二面角的大小为,若存在,确定的位置,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若将函数y=cos 2x的图象向左平移 个单位长度,则平移后图象的对称轴为(
A.x= (k∈Z)
B.x= + (k∈Z)
C.x= (k∈Z)
D.x= + (k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在矩形ABCD中,以A为圆心,AD为半径的圆交ACABME.CE的延长线交⊙AFCM=2,AB=4.

(1)求⊙A的半径;

(2)求CE的长和△AFC的面积

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)为定义在R上的奇函数,当x≥0,f(x)=log3(x+3)﹣a,则不等式|f(x)|<1的解集为

查看答案和解析>>

同步练习册答案