精英家教网 > 高中数学 > 题目详情

【题目】已知线段AB的长为2,动点C满足 =λ(λ为负常数),且点C总不在以点B为圆心, 为半径的圆内,则实数λ的最大值是

【答案】﹣
【解析】解:由题意建立坐标系如右图,
假设点C在圆内,
则B(0,0),A(2,0),C(rcosa,rsina),(r< ),
=(2﹣rcosa,﹣rsina), =(﹣rcosa,﹣rsina),
∴λ=(2﹣rcosa,﹣rsina)(﹣rcosa,﹣rsina)
=﹣2rcosa+r2(cos2a+sin2a)
=﹣2rcosa+r2
∴r2﹣2r≤λ≤r2+2r,
故﹣ <λ<
∵点C总不在以点B为圆心, 为半径的圆内,
∴λ≤﹣ 或λ≥ (舍);
故实数λ的最大值是﹣
所以答案是:﹣

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin(ωx+φ)﹣b(ω>0,0<φ<π)的图象两对称轴之间的距离是 ,若将f(x)的图象先向由平移 个单位,再向上平移 个单位,所得函数g(x)为奇函数.
(1)求f(x)的解析式;
(2)求f(x)的单调递减区间和对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图△ABC中,AC=BC= AB,四边形ABED是边长为a的正方形,平面ABED⊥平面ABC,若G、F分别是EC、BD的中点.

(1)求证:GF∥平面ABC;
(2)求证:平面EBC⊥平面ACD;
(3)求几何体ADEBC的体积V.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD的底面是边长为a的正方形,PB⊥平面ABCD,M、N分别是AB、PC的中点.

(1)求证:MN∥平面PAB;
(2)若平面PDA与平面ABCD成60°的二面角,求该四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项为Sn , 点(n, ),(n∈N*)均在函数y=3x﹣2的图象上.
(1)求数列{an}的通项公式.
(2)设bn= ,Tn为数列{bn}的前n项和,求使得Tn 对所有n∈N*都成立的最小正整数m.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若直线 l1和l2 是异面直线,l1在平面 α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是(
A.l与l1 , l2都不相交
B.l与l1 , l2都相交
C.l至多与l1 , l2中的一条相交
D.l至少与l1 , l2中的一条相交

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,平面直角坐标系xOy中,△AOB和△COD为两等腰直角三角形,A(﹣2,0),C(a,0),(a>0),设△AOB和△COD的
外接圆圆心分别为点M、N.
(Ⅰ)若⊙M与直线CD相切,求直线CD的方程;
(Ⅱ)若直线AB截⊙N所得弦长为4,求⊙N的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知椭圆,如图所示,斜率为且不过原点的直线交椭圆于两点,线段的中点为,射线交椭圆于点,交直线于点.

(1)求的最小值;

(2)若,求证:直线过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论在上的单调性;

(2)是否存在实数,使得上的最大值为,若存在,求满足条件的的个数;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案